Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 SΓ©bastien GouΓ«zel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: SΓ©bastien GouΓ«zel | |
-/ | |
import data.matrix.basis | |
import data.matrix.dmatrix | |
import linear_algebra.matrix.determinant | |
import linear_algebra.matrix.trace | |
import linear_algebra.matrix.reindex | |
import tactic.field_simp | |
/-! | |
# Transvections | |
Transvections are matrices of the form `1 + std_basis_matrix i j c`, where `std_basis_matrix i j c` | |
is the basic matrix with a `c` at position `(i, j)`. Multiplying by such a transvection on the left | |
(resp. on the right) amounts to adding `c` times the `j`-th row to to the `i`-th row | |
(resp `c` times the `i`-th column to the `j`-th column). Therefore, they are useful to present | |
algorithms operating on rows and columns. | |
Transvections are a special case of *elementary matrices* (according to most references, these also | |
contain the matrices exchanging rows, and the matrices multiplying a row by a constant). | |
We show that, over a field, any matrix can be written as `L β¬ D β¬ L'`, where `L` and `L'` are | |
products of transvections and `D` is diagonal. In other words, one can reduce a matrix to diagonal | |
form by operations on its rows and columns, a variant of Gauss' pivot algorithm. | |
## Main definitions and results | |
* `transvection i j c` is the matrix equal to `1 + std_basis_matrix i j c`. | |
* `transvection_struct n R` is a structure containing the data of `i, j, c` and a proof that | |
`i β j`. These are often easier to manipulate than straight matrices, especially in inductive | |
arguments. | |
* `exists_list_transvec_mul_diagonal_mul_list_transvec` states that any matrix `M` over a field can | |
be written in the form `t_1 β¬ ... β¬ t_k β¬ D β¬ t'_1 β¬ ... β¬ t'_l`, where `D` is diagonal and | |
the `t_i`, `t'_j` are transvections. | |
* `diagonal_transvection_induction` shows that a property which is true for diagonal matrices and | |
transvections, and invariant under product, is true for all matrices. | |
* `diagonal_transvection_induction_of_det_ne_zero` is the same statement over invertible matrices. | |
## Implementation details | |
The proof of the reduction results is done inductively on the size of the matrices, reducing an | |
`(r + 1) Γ (r + 1)` matrix to a matrix whose last row and column are zeroes, except possibly for | |
the last diagonal entry. This step is done as follows. | |
If all the coefficients on the last row and column are zero, there is nothing to do. Otherwise, | |
one can put a nonzero coefficient in the last diagonal entry by a row or column operation, and then | |
subtract this last diagonal entry from the other entries in the last row and column to make them | |
vanish. | |
This step is done in the type `fin r β unit`, where `fin r` is useful to choose arbitrarily some | |
order in which we cancel the coefficients, and the sum structure is useful to use the formalism of | |
block matrices. | |
To proceed with the induction, we reindex our matrices to reduce to the above situation. | |
-/ | |
universes uβ uβ | |
namespace matrix | |
open_locale matrix | |
variables (n p : Type*) (R : Type uβ) {π : Type*} [field π] | |
variables [decidable_eq n] [decidable_eq p] | |
variables [comm_ring R] | |
section transvection | |
variables {R n} (i j : n) | |
/-- The transvection matrix `transvection i j c` is equal to the identity plus `c` at position | |
`(i, j)`. Multiplying by it on the left (as in `transvection i j c β¬ M`) corresponds to adding | |
`c` times the `j`-th line of `M` to its `i`-th line. Multiplying by it on the right corresponds | |
to adding `c` times the `i`-th column to the `j`-th column. -/ | |
def transvection (c : R) : matrix n n R := 1 + matrix.std_basis_matrix i j c | |
@[simp] lemma transvection_zero : transvection i j (0 : R) = 1 := | |
by simp [transvection] | |
section | |
variable [fintype n] | |
/-- A transvection matrix is obtained from the identity by adding `c` times the `j`-th row to | |
the `i`-th row. -/ | |
lemma update_row_eq_transvection (c : R) : | |
update_row (1 : matrix n n R) i (((1 : matrix n n R)) i + c β’ (1 : matrix n n R) j) = | |
transvection i j c := | |
begin | |
ext a b, | |
by_cases ha : i = a, by_cases hb : j = b, | |
{ simp only [update_row, transvection, ha, hb, function.update_same, std_basis_matrix.apply_same, | |
pi.add_apply, one_apply_eq, pi.smul_apply, mul_one, algebra.id.smul_eq_mul], }, | |
{ simp only [update_row, transvection, ha, hb, std_basis_matrix.apply_of_ne, function.update_same, | |
pi.add_apply, ne.def, not_false_iff, pi.smul_apply, and_false, one_apply_ne, | |
algebra.id.smul_eq_mul, mul_zero] }, | |
{ simp only [update_row, transvection, ha, ne.symm ha, std_basis_matrix.apply_of_ne, add_zero, | |
algebra.id.smul_eq_mul, function.update_noteq, ne.def, not_false_iff, dmatrix.add_apply, | |
pi.smul_apply, mul_zero, false_and] }, | |
end | |
lemma transvection_mul_transvection_same (h : i β j) (c d : R) : | |
transvection i j c β¬ transvection i j d = transvection i j (c + d) := | |
by simp [transvection, matrix.add_mul, matrix.mul_add, h, h.symm, add_smul, add_assoc, | |
std_basis_matrix_add] | |
@[simp] lemma transvection_mul_apply_same (b : n) (c : R) (M : matrix n n R) : | |
(transvection i j c β¬ M) i b = M i b + c * M j b := | |
by simp [transvection, matrix.add_mul] | |
@[simp] lemma mul_transvection_apply_same (a : n) (c : R) (M : matrix n n R) : | |
(M β¬ transvection i j c) a j = M a j + c * M a i := | |
by simp [transvection, matrix.mul_add, mul_comm] | |
@[simp] lemma transvection_mul_apply_of_ne (a b : n) (ha : a β i) (c : R) (M : matrix n n R) : | |
(transvection i j c β¬ M) a b = M a b := | |
by simp [transvection, matrix.add_mul, ha] | |
@[simp] lemma mul_transvection_apply_of_ne (a b : n) (hb : b β j) (c : R) (M : matrix n n R) : | |
(M β¬ transvection i j c) a b = M a b := | |
by simp [transvection, matrix.mul_add, hb] | |
@[simp] lemma det_transvection_of_ne (h : i β j) (c : R) : det (transvection i j c) = 1 := | |
by rw [β update_row_eq_transvection i j, det_update_row_add_smul_self _ h, det_one] | |
end | |
variables (R n) | |
/-- A structure containing all the information from which one can build a nontrivial transvection. | |
This structure is easier to manipulate than transvections as one has a direct access to all the | |
relevant fields. -/ | |
@[nolint has_nonempty_instance] | |
structure transvection_struct := | |
(i j : n) | |
(hij : i β j) | |
(c : R) | |
instance [nontrivial n] : nonempty (transvection_struct n R) := | |
by { choose x y hxy using exists_pair_ne n, exact β¨β¨x, y, hxy, 0β©β© } | |
namespace transvection_struct | |
variables {R n} | |
/-- Associating to a `transvection_struct` the corresponding transvection matrix. -/ | |
def to_matrix (t : transvection_struct n R) : matrix n n R := | |
transvection t.i t.j t.c | |
@[simp] lemma to_matrix_mk (i j : n) (hij : i β j) (c : R) : | |
transvection_struct.to_matrix β¨i, j, hij, cβ© = transvection i j c := rfl | |
@[simp] protected lemma det [fintype n] (t : transvection_struct n R) : det t.to_matrix = 1 := | |
det_transvection_of_ne _ _ t.hij _ | |
@[simp] lemma det_to_matrix_prod [fintype n] (L : list (transvection_struct n π)) : | |
det ((L.map to_matrix).prod) = 1 := | |
begin | |
induction L with t L IH, | |
{ simp }, | |
{ simp [IH], } | |
end | |
/-- The inverse of a `transvection_struct`, designed so that `t.inv.to_matrix` is the inverse of | |
`t.to_matrix`. -/ | |
@[simps] protected def inv (t : transvection_struct n R) : transvection_struct n R := | |
{ i := t.i, | |
j := t.j, | |
hij := t.hij, | |
c := - t.c } | |
section | |
variable [fintype n] | |
lemma inv_mul (t : transvection_struct n R) : | |
t.inv.to_matrix β¬ t.to_matrix = 1 := | |
by { rcases t, simp [to_matrix, transvection_mul_transvection_same, t_hij] } | |
lemma mul_inv (t : transvection_struct n R) : | |
t.to_matrix β¬ t.inv.to_matrix = 1 := | |
by { rcases t, simp [to_matrix, transvection_mul_transvection_same, t_hij] } | |
lemma reverse_inv_prod_mul_prod (L : list (transvection_struct n R)) : | |
(L.reverse.map (to_matrix β transvection_struct.inv)).prod β¬ (L.map to_matrix).prod = 1 := | |
begin | |
induction L with t L IH, | |
{ simp }, | |
{ suffices : (L.reverse.map (to_matrix β transvection_struct.inv)).prod β¬ | |
(t.inv.to_matrix β¬ t.to_matrix) β¬ (L.map to_matrix).prod = 1, by simpa [matrix.mul_assoc], | |
simpa [inv_mul] using IH, } | |
end | |
lemma prod_mul_reverse_inv_prod (L : list (transvection_struct n R)) : | |
(L.map to_matrix).prod β¬ (L.reverse.map (to_matrix β transvection_struct.inv)).prod = 1 := | |
begin | |
induction L with t L IH, | |
{ simp }, | |
{ suffices : t.to_matrix β¬ ((L.map to_matrix).prod β¬ | |
(L.reverse.map (to_matrix β transvection_struct.inv)).prod) β¬ t.inv.to_matrix = 1, | |
by simpa [matrix.mul_assoc], | |
simp_rw [IH, matrix.mul_one, t.mul_inv], } | |
end | |
end | |
variables (p) | |
open sum | |
/-- Given a `transvection_struct` on `n`, define the corresponding `transvection_struct` on `n β p` | |
using the identity on `p`. -/ | |
def sum_inl (t : transvection_struct n R) : transvection_struct (n β p) R := | |
{ i := inl t.i, | |
j := inl t.j, | |
hij := by simp [t.hij], | |
c := t.c } | |
lemma to_matrix_sum_inl (t : transvection_struct n R) : | |
(t.sum_inl p).to_matrix = from_blocks t.to_matrix 0 0 1 := | |
begin | |
cases t, | |
ext a b, | |
cases a; cases b, | |
{ by_cases h : a = b; | |
simp [transvection_struct.sum_inl, transvection, h, std_basis_matrix], }, | |
{ simp [transvection_struct.sum_inl, transvection] }, | |
{ simp [transvection_struct.sum_inl, transvection] }, | |
{ by_cases h : a = b; | |
simp [transvection_struct.sum_inl, transvection, h] }, | |
end | |
@[simp] lemma sum_inl_to_matrix_prod_mul [fintype n] [fintype p] | |
(M : matrix n n R) (L : list (transvection_struct n R)) (N : matrix p p R) : | |
(L.map (to_matrix β sum_inl p)).prod β¬ from_blocks M 0 0 N | |
= from_blocks ((L.map to_matrix).prod β¬ M) 0 0 N := | |
begin | |
induction L with t L IH, | |
{ simp }, | |
{ simp [matrix.mul_assoc, IH, to_matrix_sum_inl, from_blocks_multiply], }, | |
end | |
@[simp] lemma mul_sum_inl_to_matrix_prod [fintype n] [fintype p] | |
(M : matrix n n R) (L : list (transvection_struct n R)) (N : matrix p p R) : | |
(from_blocks M 0 0 N) β¬ (L.map (to_matrix β sum_inl p)).prod | |
= from_blocks (M β¬ (L.map to_matrix).prod) 0 0 N := | |
begin | |
induction L with t L IH generalizing M N, | |
{ simp }, | |
{ simp [IH, to_matrix_sum_inl, from_blocks_multiply], }, | |
end | |
variable {p} | |
/-- Given a `transvection_struct` on `n` and an equivalence between `n` and `p`, define the | |
corresponding `transvection_struct` on `p`. -/ | |
def reindex_equiv (e : n β p) (t : transvection_struct n R) : transvection_struct p R := | |
{ i := e t.i, | |
j := e t.j, | |
hij := by simp [t.hij], | |
c := t.c } | |
variables [fintype n] [fintype p] | |
lemma to_matrix_reindex_equiv (e : n β p) (t : transvection_struct n R) : | |
(t.reindex_equiv e).to_matrix = reindex_alg_equiv R e t.to_matrix := | |
begin | |
cases t, | |
ext a b, | |
simp only [reindex_equiv, transvection, mul_boole, algebra.id.smul_eq_mul, to_matrix_mk, | |
minor_apply, reindex_apply, dmatrix.add_apply, pi.smul_apply, reindex_alg_equiv_apply], | |
by_cases ha : e t_i = a; by_cases hb : e t_j = b; by_cases hab : a = b; | |
simp [ha, hb, hab, β e.apply_eq_iff_eq_symm_apply, std_basis_matrix] | |
end | |
lemma to_matrix_reindex_equiv_prod (e : n β p) (L : list (transvection_struct n R)) : | |
(L.map (to_matrix β (reindex_equiv e))).prod = reindex_alg_equiv R e (L.map to_matrix).prod := | |
begin | |
induction L with t L IH, | |
{ simp }, | |
{ simp only [to_matrix_reindex_equiv, IH, function.comp_app, list.prod_cons, mul_eq_mul, | |
reindex_alg_equiv_apply, list.map], | |
exact (reindex_alg_equiv_mul _ _ _ _).symm } | |
end | |
end transvection_struct | |
end transvection | |
/-! | |
# Reducing matrices by left and right multiplication by transvections | |
In this section, we show that any matrix can be reduced to diagonal form by left and right | |
multiplication by transvections (or, equivalently, by elementary operations on lines and columns). | |
The main step is to kill the last row and column of a matrix in `fin r β unit` with nonzero last | |
coefficient, by subtracting this coefficient from the other ones. The list of these operations is | |
recorded in `list_transvec_col M` and `list_transvec_row M`. We have to analyze inductively how | |
these operations affect the coefficients in the last row and the last column to conclude that they | |
have the desired effect. | |
Once this is done, one concludes the reduction by induction on the size | |
of the matrices, through a suitable reindexing to identify any fintype with `fin r β unit`. | |
-/ | |
namespace pivot | |
variables {R} {r : β} (M : matrix (fin r β unit) (fin r β unit) π) | |
open sum unit fin transvection_struct | |
/-- A list of transvections such that multiplying on the left with these transvections will replace | |
the last column with zeroes. -/ | |
def list_transvec_col : list (matrix (fin r β unit) (fin r β unit) π) := | |
list.of_fn $ Ξ» i : fin r, transvection (inl i) (inr star) $ | |
-M (inl i) (inr star) / M (inr star) (inr star) | |
/-- A list of transvections such that multiplying on the right with these transvections will replace | |
the last row with zeroes. -/ | |
def list_transvec_row : list (matrix (fin r β unit) (fin r β unit) π) := | |
list.of_fn $ Ξ» i : fin r, transvection (inr star) (inl i) $ | |
-M (inr star) (inl i) / M (inr star) (inr star) | |
/-- Multiplying by some of the matrices in `list_transvec_col M` does not change the last row. -/ | |
lemma list_transvec_col_mul_last_row_drop (i : fin r β unit) {k : β} (hk : k β€ r) : | |
(((list_transvec_col M).drop k).prod β¬ M) (inr star) i = M (inr star) i := | |
begin | |
apply nat.decreasing_induction' _ hk, | |
{ simp only [list_transvec_col, list.length_of_fn, matrix.one_mul, list.drop_eq_nil_of_le, | |
list.prod_nil], }, | |
{ assume n hn hk IH, | |
have hn' : n < (list_transvec_col M).length, by simpa [list_transvec_col] using hn, | |
rw β list.cons_nth_le_drop_succ hn', | |
simpa [list_transvec_col, matrix.mul_assoc] } | |
end | |
/-- Multiplying by all the matrices in `list_transvec_col M` does not change the last row. -/ | |
lemma list_transvec_col_mul_last_row (i : fin r β unit) : | |
((list_transvec_col M).prod β¬ M) (inr star) i = M (inr star) i := | |
by simpa using list_transvec_col_mul_last_row_drop M i (zero_le _) | |
/-- Multiplying by all the matrices in `list_transvec_col M` kills all the coefficients in the | |
last column but the last one. -/ | |
lemma list_transvec_col_mul_last_col (hM : M (inr star) (inr star) β 0) (i : fin r) : | |
((list_transvec_col M).prod β¬ M) (inl i) (inr star) = 0 := | |
begin | |
suffices H : β (k : β), k β€ r β (((list_transvec_col M).drop k).prod β¬ M) (inl i) (inr star) = | |
if k β€ i then 0 else M (inl i) (inr star), | |
by simpa only [if_true, list.drop.equations._eqn_1] using H 0 (zero_le _), | |
assume k hk, | |
apply nat.decreasing_induction' _ hk, | |
{ simp only [list_transvec_col, list.length_of_fn, matrix.one_mul, list.drop_eq_nil_of_le, | |
list.prod_nil], | |
rw if_neg, | |
simpa only [not_le] using i.2 }, | |
{ assume n hn hk IH, | |
have hn' : n < (list_transvec_col M).length, by simpa [list_transvec_col] using hn, | |
let n' : fin r := β¨n, hnβ©, | |
rw β list.cons_nth_le_drop_succ hn', | |
have A : (list_transvec_col M).nth_le n hn' = transvection (inl n') (inr star) | |
(-M (inl n') (inr star) / M (inr star) (inr star)), by simp [list_transvec_col], | |
simp only [matrix.mul_assoc, A, matrix.mul_eq_mul, list.prod_cons], | |
by_cases h : n' = i, | |
{ have hni : n = i, | |
{ cases i, simp only [subtype.mk_eq_mk] at h, simp [h] }, | |
rw [h, transvection_mul_apply_same, IH, list_transvec_col_mul_last_row_drop _ _ hn, β hni], | |
field_simp [hM] }, | |
{ have hni : n β i, | |
{ rintros rfl, cases i, simpa using h }, | |
simp only [transvection_mul_apply_of_ne, ne.def, not_false_iff, ne.symm h], | |
rw IH, | |
rcases le_or_lt (n+1) i with hi|hi, | |
{ simp only [hi, n.le_succ.trans hi, if_true] }, | |
{ rw [if_neg, if_neg], | |
{ simpa only [hni.symm, not_le, or_false] using nat.lt_succ_iff_lt_or_eq.1 hi }, | |
{ simpa only [not_le] using hi } } } } | |
end | |
/-- Multiplying by some of the matrices in `list_transvec_row M` does not change the last column. -/ | |
lemma mul_list_transvec_row_last_col_take (i : fin r β unit) {k : β} (hk : k β€ r) : | |
(M β¬ ((list_transvec_row M).take k).prod) i (inr star) = M i (inr star) := | |
begin | |
induction k with k IH, | |
{ simp only [matrix.mul_one, list.take_zero, list.prod_nil], }, | |
{ have hkr : k < r := hk, | |
let k' : fin r := β¨k, hkrβ©, | |
have : (list_transvec_row M).nth k = β(transvection (inr unit.star) (inl k') | |
(-M (inr unit.star) (inl k') / M (inr unit.star) (inr unit.star))), | |
{ simp only [list_transvec_row, list.of_fn_nth_val, hkr, dif_pos, list.nth_of_fn], refl }, | |
simp only [list.take_succ, β matrix.mul_assoc, this, list.prod_append, matrix.mul_one, | |
matrix.mul_eq_mul, list.prod_cons, list.prod_nil, option.to_list_some], | |
rw [mul_transvection_apply_of_ne, IH hkr.le], | |
simp only [ne.def, not_false_iff], } | |
end | |
/-- Multiplying by all the matrices in `list_transvec_row M` does not change the last column. -/ | |
lemma mul_list_transvec_row_last_col (i : fin r β unit) : | |
(M β¬ (list_transvec_row M).prod) i (inr star) = M i (inr star) := | |
begin | |
have A : (list_transvec_row M).length = r, by simp [list_transvec_row], | |
rw [β list.take_length (list_transvec_row M), A], | |
simpa using mul_list_transvec_row_last_col_take M i le_rfl, | |
end | |
/-- Multiplying by all the matrices in `list_transvec_row M` kills all the coefficients in the | |
last row but the last one. -/ | |
lemma mul_list_transvec_row_last_row (hM : M (inr star) (inr star) β 0) (i : fin r) : | |
(M β¬ (list_transvec_row M).prod) (inr star) (inl i) = 0 := | |
begin | |
suffices H : β (k : β), k β€ r β (M β¬ ((list_transvec_row M).take k).prod) (inr star) (inl i) = | |
if k β€ i then M (inr star) (inl i) else 0, | |
{ have A : (list_transvec_row M).length = r, by simp [list_transvec_row], | |
rw [β list.take_length (list_transvec_row M), A], | |
have : Β¬ (r β€ i), by simpa using i.2, | |
simpa only [this, ite_eq_right_iff] using H r le_rfl }, | |
assume k hk, | |
induction k with n IH, | |
{ simp only [if_true, matrix.mul_one, list.take_zero, zero_le', list.prod_nil] }, | |
{ have hnr : n < r := hk, | |
let n' : fin r := β¨n, hnrβ©, | |
have A : (list_transvec_row M).nth n = β(transvection (inr unit.star) (inl n') | |
(-M (inr unit.star) (inl n') / M (inr unit.star) (inr unit.star))), | |
{ simp only [list_transvec_row, list.of_fn_nth_val, hnr, dif_pos, list.nth_of_fn], refl }, | |
simp only [list.take_succ, A, β matrix.mul_assoc, list.prod_append, matrix.mul_one, | |
matrix.mul_eq_mul, list.prod_cons, list.prod_nil, option.to_list_some], | |
by_cases h : n' = i, | |
{ have hni : n = i, | |
{ cases i, simp only [subtype.mk_eq_mk] at h, simp only [h, coe_mk] }, | |
have : Β¬ (n.succ β€ i), by simp only [β hni, n.lt_succ_self, not_le], | |
simp only [h, mul_transvection_apply_same, list.take, if_false, | |
mul_list_transvec_row_last_col_take _ _ hnr.le, hni.le, this, if_true, IH hnr.le], | |
field_simp [hM] }, | |
{ have hni : n β i, | |
{ rintros rfl, cases i, simpa using h }, | |
simp only [IH hnr.le, ne.def, mul_transvection_apply_of_ne, not_false_iff, ne.symm h], | |
rcases le_or_lt (n+1) i with hi|hi, | |
{ simp [hi, n.le_succ.trans hi, if_true], }, | |
{ rw [if_neg, if_neg], | |
{ simpa only [not_le] using hi }, | |
{ simpa only [hni.symm, not_le, or_false] using nat.lt_succ_iff_lt_or_eq.1 hi } } } } | |
end | |
/-- Multiplying by all the matrices either in `list_transvec_col M` and `list_transvec_row M` kills | |
all the coefficients in the last row but the last one. -/ | |
lemma list_transvec_col_mul_mul_list_transvec_row_last_col | |
(hM : M (inr star) (inr star) β 0) (i : fin r) : | |
((list_transvec_col M).prod β¬ M β¬ (list_transvec_row M).prod) (inr star) (inl i) = 0 := | |
begin | |
have : list_transvec_row M = list_transvec_row ((list_transvec_col M).prod β¬ M), | |
by simp [list_transvec_row, list_transvec_col_mul_last_row], | |
rw this, | |
apply mul_list_transvec_row_last_row, | |
simpa [list_transvec_col_mul_last_row] using hM | |
end | |
/-- Multiplying by all the matrices either in `list_transvec_col M` and `list_transvec_row M` kills | |
all the coefficients in the last column but the last one. -/ | |
lemma list_transvec_col_mul_mul_list_transvec_row_last_row | |
(hM : M (inr star) (inr star) β 0) (i : fin r) : | |
((list_transvec_col M).prod β¬ M β¬ (list_transvec_row M).prod) (inl i) (inr star) = 0 := | |
begin | |
have : list_transvec_col M = list_transvec_col (M β¬ (list_transvec_row M).prod), | |
by simp [list_transvec_col, mul_list_transvec_row_last_col], | |
rw [this, matrix.mul_assoc], | |
apply list_transvec_col_mul_last_col, | |
simpa [mul_list_transvec_row_last_col] using hM | |
end | |
/-- Multiplying by all the matrices either in `list_transvec_col M` and `list_transvec_row M` turns | |
the matrix in block-diagonal form. -/ | |
lemma is_two_block_diagonal_list_transvec_col_mul_mul_list_transvec_row | |
(hM : M (inr star) (inr star) β 0) : | |
is_two_block_diagonal ((list_transvec_col M).prod β¬ M β¬ (list_transvec_row M).prod) := | |
begin | |
split, | |
{ ext i j, | |
have : j = star, by simp only [eq_iff_true_of_subsingleton], | |
simp [to_blocksββ, this, list_transvec_col_mul_mul_list_transvec_row_last_row M hM] }, | |
{ ext i j, | |
have : i = star, by simp only [eq_iff_true_of_subsingleton], | |
simp [to_blocksββ, this, list_transvec_col_mul_mul_list_transvec_row_last_col M hM] }, | |
end | |
/-- There exist two lists of `transvection_struct` such that multiplying by them on the left and | |
on the right makes a matrix block-diagonal, when the last coefficient is nonzero. -/ | |
lemma exists_is_two_block_diagonal_of_ne_zero (hM : M (inr star) (inr star) β 0) : | |
β (L L' : list (transvection_struct (fin r β unit) π)), | |
is_two_block_diagonal ((L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod) := | |
begin | |
let L : list (transvection_struct (fin r β unit) π) := | |
list.of_fn (Ξ» i : fin r, β¨inl i, inr star, by simp, | |
-M (inl i) (inr star) / M (inr star) (inr star)β©), | |
let L' : list (transvection_struct (fin r β unit) π) := | |
list.of_fn (Ξ» i : fin r, β¨inr star, inl i, by simp, | |
-M (inr star) (inl i) / M (inr star) (inr star)β©), | |
refine β¨L, L', _β©, | |
have A : L.map to_matrix = list_transvec_col M, by simp [L, list_transvec_col, (β)], | |
have B : L'.map to_matrix = list_transvec_row M, by simp [L, list_transvec_row, (β)], | |
rw [A, B], | |
exact is_two_block_diagonal_list_transvec_col_mul_mul_list_transvec_row M hM | |
end | |
/-- There exist two lists of `transvection_struct` such that multiplying by them on the left and | |
on the right makes a matrix block-diagonal. -/ | |
lemma exists_is_two_block_diagonal_list_transvec_mul_mul_list_transvec | |
(M : matrix (fin r β unit) (fin r β unit) π) : | |
β (L L' : list (transvection_struct (fin r β unit) π)), | |
is_two_block_diagonal ((L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod) := | |
begin | |
by_cases H : is_two_block_diagonal M, { refine β¨list.nil, list.nil, by simpa using Hβ© }, | |
-- we have already proved this when the last coefficient is nonzero | |
by_cases hM : M (inr star) (inr star) β 0, | |
{ exact exists_is_two_block_diagonal_of_ne_zero M hM }, | |
-- when the last coefficient is zero but there is a nonzero coefficient on the last row or the | |
-- last column, we will first put this nonzero coefficient in last position, and then argue as | |
-- above. | |
push_neg at hM, | |
simp [not_and_distrib, is_two_block_diagonal, to_blocksββ, to_blocksββ, βmatrix.ext_iff] at H, | |
have : β (i : fin r), M (inl i) (inr star) β 0 β¨ M (inr star) (inl i) β 0, | |
{ cases H, | |
{ contrapose! H, | |
rintros i β¨β©, | |
exact (H i).1 }, | |
{ contrapose! H, | |
rintros β¨β© j, | |
exact (H j).2, } }, | |
rcases this with β¨i, h|hβ©, | |
{ let M' := transvection (inr unit.star) (inl i) 1 β¬ M, | |
have hM' : M' (inr star) (inr star) β 0, by simpa [M', hM], | |
rcases exists_is_two_block_diagonal_of_ne_zero M' hM' with β¨L, L', hLL'β©, | |
rw matrix.mul_assoc at hLL', | |
refine β¨L ++ [β¨inr star, inl i, by simp, 1β©], L', _β©, | |
simp only [list.map_append, list.prod_append, matrix.mul_one, to_matrix_mk, list.prod_cons, | |
list.prod_nil, mul_eq_mul, list.map, matrix.mul_assoc (L.map to_matrix).prod], | |
exact hLL' }, | |
{ let M' := M β¬ transvection (inl i) (inr star) 1, | |
have hM' : M' (inr star) (inr star) β 0, by simpa [M', hM], | |
rcases exists_is_two_block_diagonal_of_ne_zero M' hM' with β¨L, L', hLL'β©, | |
refine β¨L, β¨inl i, inr star, by simp, 1β© :: L', _β©, | |
simp only [βmatrix.mul_assoc, to_matrix_mk, list.prod_cons, mul_eq_mul, list.map], | |
rw [matrix.mul_assoc (L.map to_matrix).prod], | |
exact hLL' } | |
end | |
/-- Inductive step for the reduction: if one knows that any size `r` matrix can be reduced to | |
diagonal form by elementary operations, then one deduces it for matrices over `fin r β unit`. -/ | |
lemma exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction | |
(IH : β (M : matrix (fin r) (fin r) π), | |
β (Lβ Lβ' : list (transvection_struct (fin r) π)) (Dβ : (fin r) β π), | |
(Lβ.map to_matrix).prod β¬ M β¬ (Lβ'.map to_matrix).prod = diagonal Dβ) | |
(M : matrix (fin r β unit) (fin r β unit) π) : | |
β (L L' : list (transvection_struct (fin r β unit) π)) (D : fin r β unit β π), | |
(L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod = diagonal D := | |
begin | |
rcases exists_is_two_block_diagonal_list_transvec_mul_mul_list_transvec M with β¨Lβ, Lβ', hMβ©, | |
let M' := (Lβ.map to_matrix).prod β¬ M β¬ (Lβ'.map to_matrix).prod, | |
let M'' := to_blocksββ M', | |
rcases IH M'' with β¨Lβ, Lβ', Dβ, hββ©, | |
set c := M' (inr star) (inr star) with hc, | |
refine β¨Lβ.map (sum_inl unit) ++ Lβ, Lβ' ++ Lβ'.map (sum_inl unit), | |
sum.elim Dβ (Ξ» _, M' (inr star) (inr star)), _β©, | |
suffices : | |
(Lβ.map (to_matrix β sum_inl unit)).prod β¬ M' β¬ (Lβ'.map (to_matrix β sum_inl unit)).prod = | |
diagonal (sum.elim Dβ (Ξ» _, c)), by simpa [M', matrix.mul_assoc, c], | |
have : M' = from_blocks M'' 0 0 (diagonal (Ξ» _, c)), | |
{ rw β from_blocks_to_blocks M', | |
congr, | |
{ exact hM.1 }, | |
{ exact hM.2 }, | |
{ ext β¨β© β¨β©, rw [hc, to_blocksββ, of_apply], refl, } }, | |
rw this, | |
simp [hβ], | |
end | |
variables {n p} [fintype n] [fintype p] | |
/-- Reduction to diagonal form by elementary operations is invariant under reindexing. -/ | |
lemma reindex_exists_list_transvec_mul_mul_list_transvec_eq_diagonal (M : matrix p p π) (e : p β n) | |
(H : β (L L' : list (transvection_struct n π)) (D : n β π), | |
(L.map to_matrix).prod β¬ (matrix.reindex_alg_equiv π e M) β¬ (L'.map to_matrix).prod | |
= diagonal D) : | |
β (L L' : list (transvection_struct p π)) (D : p β π), | |
(L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod = diagonal D := | |
begin | |
rcases H with β¨Lβ, Lβ', Dβ, hββ©, | |
refine β¨Lβ.map (reindex_equiv e.symm), Lβ'.map (reindex_equiv e.symm), Dβ β e, _β©, | |
have : M = reindex_alg_equiv π e.symm (reindex_alg_equiv π e M), | |
by simp only [equiv.symm_symm, minor_minor, reindex_apply, minor_id_id, equiv.symm_comp_self, | |
reindex_alg_equiv_apply], | |
rw this, | |
simp only [to_matrix_reindex_equiv_prod, list.map_map, reindex_alg_equiv_apply], | |
simp only [β reindex_alg_equiv_apply, β reindex_alg_equiv_mul, hβ], | |
simp only [equiv.symm_symm, reindex_apply, minor_diagonal_equiv, reindex_alg_equiv_apply], | |
end | |
/-- Any matrix can be reduced to diagonal form by elementary operations. Formulated here on `Type 0` | |
because we will make an induction using `fin r`. | |
See `exists_list_transvec_mul_mul_list_transvec_eq_diagonal` for the general version (which follows | |
from this one and reindexing). -/ | |
lemma exists_list_transvec_mul_mul_list_transvec_eq_diagonal_aux | |
(n : Type) [fintype n] [decidable_eq n] | |
(M : matrix n n π) : β (L L' : list (transvection_struct n π)) (D : n β π), | |
(L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod = diagonal D := | |
begin | |
unfreezingI { induction hn : fintype.card n with r IH generalizing n M }, | |
{ refine β¨list.nil, list.nil, Ξ» _, 1, _β©, | |
ext i j, | |
rw fintype.card_eq_zero_iff at hn, | |
exact hn.elim' i }, | |
{ have e : n β fin r β unit, | |
{ refine fintype.equiv_of_card_eq _, | |
rw hn, | |
convert (@fintype.card_sum (fin r) unit _ _).symm, | |
simp }, | |
apply reindex_exists_list_transvec_mul_mul_list_transvec_eq_diagonal M e, | |
apply exists_list_transvec_mul_mul_list_transvec_eq_diagonal_induction | |
(Ξ» N, IH (fin r) N (by simp)) } | |
end | |
/-- Any matrix can be reduced to diagonal form by elementary operations. -/ | |
theorem exists_list_transvec_mul_mul_list_transvec_eq_diagonal | |
(M : matrix n n π) : β (L L' : list (transvection_struct n π)) (D : n β π), | |
(L.map to_matrix).prod β¬ M β¬ (L'.map to_matrix).prod = diagonal D := | |
begin | |
have e : n β fin (fintype.card n) := fintype.equiv_of_card_eq (by simp), | |
apply reindex_exists_list_transvec_mul_mul_list_transvec_eq_diagonal M e, | |
apply exists_list_transvec_mul_mul_list_transvec_eq_diagonal_aux | |
end | |
/-- Any matrix can be written as the product of transvections, a diagonal matrix, and | |
transvections.-/ | |
theorem exists_list_transvec_mul_diagonal_mul_list_transvec | |
(M : matrix n n π) : β (L L' : list (transvection_struct n π)) (D : n β π), | |
M = (L.map to_matrix).prod β¬ diagonal D β¬ (L'.map to_matrix).prod := | |
begin | |
rcases exists_list_transvec_mul_mul_list_transvec_eq_diagonal M with β¨L, L', D, hβ©, | |
refine β¨L.reverse.map transvection_struct.inv, L'.reverse.map transvection_struct.inv, D, _β©, | |
suffices : M = | |
((L.reverse.map (to_matrix β transvection_struct.inv)).prod β¬ (L.map to_matrix).prod) β¬ M β¬ | |
((L'.map to_matrix).prod β¬ (L'.reverse.map (to_matrix β transvection_struct.inv)).prod), | |
by simpa [β h, matrix.mul_assoc], | |
rw [reverse_inv_prod_mul_prod, prod_mul_reverse_inv_prod, matrix.one_mul, matrix.mul_one], | |
end | |
end pivot | |
open pivot transvection_struct | |
variables {n} [fintype n] | |
/-- Induction principle for matrices based on transvections: if a property is true for all diagonal | |
matrices, all transvections, and is stable under product, then it is true for all matrices. This is | |
the useful way to say that matrices are generated by diagonal matrices and transvections. | |
We state a slightly more general version: to prove a property for a matrix `M`, it suffices to | |
assume that the diagonal matrices we consider have the same determinant as `M`. This is useful to | |
obtain similar principles for `SLβ` or `GLβ`. -/ | |
lemma diagonal_transvection_induction (P : matrix n n π β Prop) (M : matrix n n π) | |
(hdiag : β D : n β π, det (diagonal D) = det M β P (diagonal D)) | |
(htransvec : β (t : transvection_struct n π), P t.to_matrix) | |
(hmul : β A B, P A β P B β P (A β¬ B)) : | |
P M := | |
begin | |
rcases exists_list_transvec_mul_diagonal_mul_list_transvec M with β¨L, L', D, hβ©, | |
have PD : P (diagonal D) := hdiag D (by simp [h]), | |
suffices H : β (Lβ Lβ : list (transvection_struct n π)) (E : matrix n n π), | |
P E β P ((Lβ.map to_matrix).prod β¬ E β¬ (Lβ.map to_matrix).prod), | |
by { rw h, apply H L L', exact PD }, | |
assume Lβ Lβ E PE, | |
induction Lβ with t Lβ IH, | |
{ simp only [matrix.one_mul, list.prod_nil, list.map], | |
induction Lβ with t Lβ IH generalizing E, | |
{ simpa }, | |
{ simp only [βmatrix.mul_assoc, list.prod_cons, mul_eq_mul, list.map], | |
apply IH, | |
exact hmul _ _ PE (htransvec _) } }, | |
{ simp only [matrix.mul_assoc, list.prod_cons, mul_eq_mul, list.map] at β’ IH, | |
exact hmul _ _ (htransvec _) IH } | |
end | |
/-- Induction principle for invertible matrices based on transvections: if a property is true for | |
all invertible diagonal matrices, all transvections, and is stable under product of invertible | |
matrices, then it is true for all invertible matrices. This is the useful way to say that | |
invertible matrices are generated by invertible diagonal matrices and transvections. -/ | |
lemma diagonal_transvection_induction_of_det_ne_zero (P : matrix n n π β Prop) | |
(M : matrix n n π) (hMdet : det M β 0) | |
(hdiag : β D : n β π, det (diagonal D) β 0 β P (diagonal D)) | |
(htransvec : β (t : transvection_struct n π), P t.to_matrix) | |
(hmul : β A B, det A β 0 β det B β 0 β P A β P B β P (A β¬ B)) : | |
P M := | |
begin | |
let Q : matrix n n π β Prop := Ξ» N, det N β 0 β§ P N, | |
have : Q M, | |
{ apply diagonal_transvection_induction Q M, | |
{ assume D hD, | |
have detD : det (diagonal D) β 0, by { rw hD, exact hMdet }, | |
exact β¨detD, hdiag _ detDβ© }, | |
{ assume t, | |
exact β¨by simp, htransvec tβ© }, | |
{ assume A B QA QB, | |
exact β¨by simp [QA.1, QB.1], hmul A B QA.1 QB.1 QA.2 QB.2β© } }, | |
exact this.2 | |
end | |
end matrix | |