Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Alexander Bentkamp. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Alexander Bentkamp | |
-/ | |
import linear_algebra.matrix.spectrum | |
import linear_algebra.quadratic_form.basic | |
/-! # Positive Definite Matrices | |
This file defines positive definite matrices and connects this notion to positive definiteness of | |
quadratic forms. | |
## Main definition | |
* `matrix.pos_def` : a matrix `M : matrix n n R` is positive definite if it is hermitian | |
and `xᴴMx` is greater than zero for all nonzero `x`. | |
-/ | |
namespace matrix | |
variables {𝕜 : Type*} [is_R_or_C 𝕜] {n : Type*} [fintype n] | |
open_locale matrix | |
/-- A matrix `M : matrix n n R` is positive definite if it is hermitian | |
and `xᴴMx` is greater than zero for all nonzero `x`. -/ | |
def pos_def (M : matrix n n 𝕜) := | |
M.is_hermitian ∧ ∀ x : n → 𝕜, x ≠ 0 → 0 < is_R_or_C.re (dot_product (star x) (M.mul_vec x)) | |
lemma pos_def.is_hermitian {M : matrix n n 𝕜} (hM : M.pos_def) : M.is_hermitian := hM.1 | |
lemma pos_def_of_to_quadratic_form' [decidable_eq n] {M : matrix n n ℝ} | |
(hM : M.is_symm) (hMq : M.to_quadratic_form'.pos_def) : | |
M.pos_def := | |
begin | |
refine ⟨hM, λ x hx, _⟩, | |
simp only [to_quadratic_form', quadratic_form.pos_def, bilin_form.to_quadratic_form_apply, | |
matrix.to_bilin'_apply'] at hMq, | |
apply hMq x hx, | |
end | |
lemma pos_def_to_quadratic_form' [decidable_eq n] {M : matrix n n ℝ} (hM : M.pos_def) : | |
M.to_quadratic_form'.pos_def := | |
begin | |
intros x hx, | |
simp only [to_quadratic_form', bilin_form.to_quadratic_form_apply, matrix.to_bilin'_apply'], | |
apply hM.2 x hx, | |
end | |
end matrix | |
namespace quadratic_form | |
variables {n : Type*} [fintype n] | |
lemma pos_def_of_to_matrix' | |
[decidable_eq n] {Q : quadratic_form ℝ (n → ℝ)} (hQ : Q.to_matrix'.pos_def) : | |
Q.pos_def := | |
begin | |
rw [←to_quadratic_form_associated ℝ Q, | |
←bilin_form.to_matrix'.left_inv ((associated_hom _) Q)], | |
apply matrix.pos_def_to_quadratic_form' hQ | |
end | |
lemma pos_def_to_matrix' [decidable_eq n] {Q : quadratic_form ℝ (n → ℝ)} (hQ : Q.pos_def) : | |
Q.to_matrix'.pos_def := | |
begin | |
rw [←to_quadratic_form_associated ℝ Q, | |
←bilin_form.to_matrix'.left_inv ((associated_hom _) Q)] at hQ, | |
apply matrix.pos_def_of_to_quadratic_form' (is_symm_to_matrix' Q) hQ, | |
end | |
end quadratic_form | |
namespace matrix | |
variables {𝕜 : Type*} [is_R_or_C 𝕜] {n : Type*} [fintype n] | |
/-- A positive definite matrix `M` induces an inner product `⟪x, y⟫ = xᴴMy`. -/ | |
noncomputable def inner_product_space.of_matrix | |
{M : matrix n n 𝕜} (hM : M.pos_def) : inner_product_space 𝕜 (n → 𝕜) := | |
inner_product_space.of_core | |
{ inner := λ x y, dot_product (star x) (M.mul_vec y), | |
conj_sym := λ x y, by | |
rw [star_dot_product, star_ring_end_apply, star_star, star_mul_vec, | |
dot_product_mul_vec, hM.is_hermitian.eq], | |
nonneg_re := λ x, | |
begin | |
by_cases h : x = 0, | |
{ simp [h] }, | |
{ exact le_of_lt (hM.2 x h) } | |
end, | |
definite := λ x hx, | |
begin | |
by_contra' h, | |
simpa [hx, lt_self_iff_false] using hM.2 x h, | |
end, | |
add_left := by simp only [star_add, add_dot_product, eq_self_iff_true, forall_const], | |
smul_left := λ x y r, by rw [← smul_eq_mul, ←smul_dot_product, star_ring_end_apply, ← star_smul] } | |
end matrix | |