Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yakov Pechersky. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yakov Pechersky | |
-/ | |
import algebra.polynomial.big_operators | |
import data.polynomial.degree.lemmas | |
import data.polynomial.eval | |
import data.polynomial.monic | |
import linear_algebra.matrix.determinant | |
/-! | |
# Matrices of polynomials and polynomials of matrices | |
In this file, we prove results about matrices over a polynomial ring. | |
In particular, we give results about the polynomial given by | |
`det (t * I + A)`. | |
## References | |
* "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3 | |
## Tags | |
matrix determinant, polynomial | |
-/ | |
open_locale matrix big_operators polynomial | |
variables {n α : Type*} [decidable_eq n] [fintype n] [comm_ring α] | |
open polynomial matrix equiv.perm | |
namespace polynomial | |
lemma nat_degree_det_X_add_C_le (A B : matrix n n α) : | |
nat_degree (det ((X : α[X]) • A.map C + B.map C)) ≤ fintype.card n := | |
begin | |
rw det_apply, | |
refine (nat_degree_sum_le _ _).trans _, | |
refine (multiset.max_nat_le_of_forall_le _ _ _), | |
simp only [forall_apply_eq_imp_iff', true_and, function.comp_app, multiset.map_map, | |
multiset.mem_map, exists_imp_distrib, finset.mem_univ_val], | |
intro g, | |
calc nat_degree (sign g • ∏ (i : n), (X • A.map C + B.map C) (g i) i) | |
≤ nat_degree (∏ (i : n), (X • A.map C + B.map C) (g i) i) : by | |
{ cases int.units_eq_one_or (sign g) with sg sg, | |
{ rw [sg, one_smul] }, | |
{ rw [sg, units.neg_smul, one_smul, nat_degree_neg] } } | |
... ≤ ∑ (i : n), nat_degree (((X : α[X]) • A.map C + B.map C) (g i) i) : | |
nat_degree_prod_le (finset.univ : finset n) (λ (i : n), (X • A.map C + B.map C) (g i) i) | |
... ≤ finset.univ.card • 1 : finset.sum_le_card_nsmul _ _ 1 (λ (i : n) _, _) | |
... ≤ fintype.card n : by simpa, | |
calc nat_degree (((X : α[X]) • A.map C + B.map C) (g i) i) | |
= nat_degree ((X : α[X]) * C (A (g i) i) + C (B (g i) i)) : by simp | |
... ≤ max (nat_degree ((X : α[X]) * C (A (g i) i))) (nat_degree (C (B (g i) i))) : | |
nat_degree_add_le _ _ | |
... = nat_degree ((X : α[X]) * C (A (g i) i)) : | |
max_eq_left ((nat_degree_C _).le.trans (zero_le _)) | |
... ≤ nat_degree (X : α[X]) : nat_degree_mul_C_le _ _ | |
... ≤ 1 : nat_degree_X_le | |
end | |
lemma coeff_det_X_add_C_zero (A B : matrix n n α) : | |
coeff (det ((X : α[X]) • A.map C + B.map C)) 0 = det B := | |
begin | |
rw [det_apply, finset_sum_coeff, det_apply], | |
refine finset.sum_congr rfl _, | |
intros g hg, | |
convert coeff_smul (sign g) _ 0, | |
rw coeff_zero_prod, | |
refine finset.prod_congr rfl _, | |
simp | |
end | |
lemma coeff_det_X_add_C_card (A B : matrix n n α) : | |
coeff (det ((X : α[X]) • A.map C + B.map C)) (fintype.card n) = det A := | |
begin | |
rw [det_apply, det_apply, finset_sum_coeff], | |
refine finset.sum_congr rfl _, | |
simp only [algebra.id.smul_eq_mul, finset.mem_univ, ring_hom.map_matrix_apply, forall_true_left, | |
map_apply, pi.smul_apply], | |
intros g, | |
convert coeff_smul (sign g) _ _, | |
rw ←mul_one (fintype.card n), | |
convert (coeff_prod_of_nat_degree_le _ _ _ _).symm, | |
{ ext, | |
simp [coeff_C] }, | |
{ intros p hp, | |
refine (nat_degree_add_le _ _).trans _, | |
simpa only [pi.smul_apply, map_apply, algebra.id.smul_eq_mul, X_mul_C, nat_degree_C, | |
max_eq_left, zero_le'] using (nat_degree_C_mul_le _ _).trans nat_degree_X_le } | |
end | |
lemma leading_coeff_det_X_one_add_C (A : matrix n n α) : | |
leading_coeff (det ((X : α[X]) • (1 : matrix n n α[X]) + A.map C)) = 1 := | |
begin | |
casesI (subsingleton_or_nontrivial α), | |
{ simp }, | |
rw [←@det_one n, ←coeff_det_X_add_C_card _ A, leading_coeff], | |
simp only [matrix.map_one, C_eq_zero, ring_hom.map_one], | |
cases (nat_degree_det_X_add_C_le 1 A).eq_or_lt with h h, | |
{ simp only [ring_hom.map_one, matrix.map_one, C_eq_zero] at h, | |
rw h }, | |
{ -- contradiction. we have a hypothesis that the degree is less than |n| | |
-- but we know that coeff _ n = 1 | |
have H := coeff_eq_zero_of_nat_degree_lt h, | |
rw coeff_det_X_add_C_card at H, | |
simpa using H } | |
end | |
end polynomial | |