/- Copyright (c) 2021 Yakov Pechersky. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yakov Pechersky -/ import algebra.polynomial.big_operators import data.polynomial.degree.lemmas import data.polynomial.eval import data.polynomial.monic import linear_algebra.matrix.determinant /-! # Matrices of polynomials and polynomials of matrices In this file, we prove results about matrices over a polynomial ring. In particular, we give results about the polynomial given by `det (t * I + A)`. ## References * "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3 ## Tags matrix determinant, polynomial -/ open_locale matrix big_operators polynomial variables {n α : Type*} [decidable_eq n] [fintype n] [comm_ring α] open polynomial matrix equiv.perm namespace polynomial lemma nat_degree_det_X_add_C_le (A B : matrix n n α) : nat_degree (det ((X : α[X]) • A.map C + B.map C)) ≤ fintype.card n := begin rw det_apply, refine (nat_degree_sum_le _ _).trans _, refine (multiset.max_nat_le_of_forall_le _ _ _), simp only [forall_apply_eq_imp_iff', true_and, function.comp_app, multiset.map_map, multiset.mem_map, exists_imp_distrib, finset.mem_univ_val], intro g, calc nat_degree (sign g • ∏ (i : n), (X • A.map C + B.map C) (g i) i) ≤ nat_degree (∏ (i : n), (X • A.map C + B.map C) (g i) i) : by { cases int.units_eq_one_or (sign g) with sg sg, { rw [sg, one_smul] }, { rw [sg, units.neg_smul, one_smul, nat_degree_neg] } } ... ≤ ∑ (i : n), nat_degree (((X : α[X]) • A.map C + B.map C) (g i) i) : nat_degree_prod_le (finset.univ : finset n) (λ (i : n), (X • A.map C + B.map C) (g i) i) ... ≤ finset.univ.card • 1 : finset.sum_le_card_nsmul _ _ 1 (λ (i : n) _, _) ... ≤ fintype.card n : by simpa, calc nat_degree (((X : α[X]) • A.map C + B.map C) (g i) i) = nat_degree ((X : α[X]) * C (A (g i) i) + C (B (g i) i)) : by simp ... ≤ max (nat_degree ((X : α[X]) * C (A (g i) i))) (nat_degree (C (B (g i) i))) : nat_degree_add_le _ _ ... = nat_degree ((X : α[X]) * C (A (g i) i)) : max_eq_left ((nat_degree_C _).le.trans (zero_le _)) ... ≤ nat_degree (X : α[X]) : nat_degree_mul_C_le _ _ ... ≤ 1 : nat_degree_X_le end lemma coeff_det_X_add_C_zero (A B : matrix n n α) : coeff (det ((X : α[X]) • A.map C + B.map C)) 0 = det B := begin rw [det_apply, finset_sum_coeff, det_apply], refine finset.sum_congr rfl _, intros g hg, convert coeff_smul (sign g) _ 0, rw coeff_zero_prod, refine finset.prod_congr rfl _, simp end lemma coeff_det_X_add_C_card (A B : matrix n n α) : coeff (det ((X : α[X]) • A.map C + B.map C)) (fintype.card n) = det A := begin rw [det_apply, det_apply, finset_sum_coeff], refine finset.sum_congr rfl _, simp only [algebra.id.smul_eq_mul, finset.mem_univ, ring_hom.map_matrix_apply, forall_true_left, map_apply, pi.smul_apply], intros g, convert coeff_smul (sign g) _ _, rw ←mul_one (fintype.card n), convert (coeff_prod_of_nat_degree_le _ _ _ _).symm, { ext, simp [coeff_C] }, { intros p hp, refine (nat_degree_add_le _ _).trans _, simpa only [pi.smul_apply, map_apply, algebra.id.smul_eq_mul, X_mul_C, nat_degree_C, max_eq_left, zero_le'] using (nat_degree_C_mul_le _ _).trans nat_degree_X_le } end lemma leading_coeff_det_X_one_add_C (A : matrix n n α) : leading_coeff (det ((X : α[X]) • (1 : matrix n n α[X]) + A.map C)) = 1 := begin casesI (subsingleton_or_nontrivial α), { simp }, rw [←@det_one n, ←coeff_det_X_add_C_card _ A, leading_coeff], simp only [matrix.map_one, C_eq_zero, ring_hom.map_one], cases (nat_degree_det_X_add_C_le 1 A).eq_or_lt with h h, { simp only [ring_hom.map_one, matrix.map_one, C_eq_zero] at h, rw h }, { -- contradiction. we have a hypothesis that the degree is less than |n| -- but we know that coeff _ n = 1 have H := coeff_eq_zero_of_nat_degree_lt h, rw coeff_det_X_add_C_card at H, simpa using H } end end polynomial