Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Alexander Bentkamp. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Alexander Bentkamp | |
-/ | |
import analysis.inner_product_space.spectrum | |
/-! # Hermitian matrices | |
This file defines hermitian matrices and some basic results about them. | |
## Main definition | |
* `matrix.is_hermitian` : a matrix `A : matrix n n α` is hermitian if `Aᴴ = A`. | |
## Tags | |
self-adjoint matrix, hermitian matrix | |
-/ | |
namespace matrix | |
variables {α β : Type*} {m n : Type*} {A : matrix n n α} | |
open_locale matrix | |
local notation `⟪`x`, `y`⟫` := @inner α (pi_Lp 2 (λ (_ : n), α)) _ x y | |
section non_unital_semiring | |
variables [non_unital_semiring α] [star_ring α] [non_unital_semiring β] [star_ring β] | |
/-- A matrix is hermitian if it is equal to its conjugate transpose. On the reals, this definition | |
captures symmetric matrices. -/ | |
def is_hermitian (A : matrix n n α) : Prop := Aᴴ = A | |
lemma is_hermitian.eq {A : matrix n n α} (h : A.is_hermitian) : Aᴴ = A := h | |
@[ext] | |
lemma is_hermitian.ext {A : matrix n n α} : (∀ i j, star (A j i) = A i j) → A.is_hermitian := | |
by { intros h, ext i j, exact h i j } | |
lemma is_hermitian.apply {A : matrix n n α} (h : A.is_hermitian) (i j : n) : star (A j i) = A i j := | |
by { unfold is_hermitian at h, rw [← h, conj_transpose_apply, star_star, h] } | |
lemma is_hermitian.ext_iff {A : matrix n n α} : A.is_hermitian ↔ ∀ i j, star (A j i) = A i j := | |
⟨is_hermitian.apply, is_hermitian.ext⟩ | |
lemma is_hermitian_mul_conj_transpose_self [fintype n] (A : matrix n n α) : | |
(A ⬝ Aᴴ).is_hermitian := | |
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose] | |
lemma is_hermitian_transpose_mul_self [fintype n] (A : matrix n n α) : | |
(Aᴴ ⬝ A).is_hermitian := | |
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose] | |
lemma is_hermitian_add_transpose_self (A : matrix n n α) : | |
(A + Aᴴ).is_hermitian := | |
by simp [is_hermitian, add_comm] | |
lemma is_hermitian_transpose_add_self (A : matrix n n α) : | |
(Aᴴ + A).is_hermitian := | |
by simp [is_hermitian, add_comm] | |
@[simp] lemma is_hermitian_zero : | |
(0 : matrix n n α).is_hermitian := | |
conj_transpose_zero | |
@[simp] lemma is_hermitian.map {A : matrix n n α} (h : A.is_hermitian) (f : α → β) | |
(hf : function.semiconj f star star) : | |
(A.map f).is_hermitian := | |
(conj_transpose_map f hf).symm.trans $ h.eq.symm ▸ rfl | |
@[simp] lemma is_hermitian.transpose {A : matrix n n α} (h : A.is_hermitian) : | |
Aᵀ.is_hermitian := | |
by { rw [is_hermitian, conj_transpose, transpose_map], congr, exact h } | |
@[simp] lemma is_hermitian.conj_transpose {A : matrix n n α} (h : A.is_hermitian) : | |
Aᴴ.is_hermitian := | |
h.transpose.map _ $ λ _, rfl | |
@[simp] lemma is_hermitian.add {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) : | |
(A + B).is_hermitian := | |
(conj_transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl) | |
@[simp] lemma is_hermitian.minor {A : matrix n n α} (h : A.is_hermitian) (f : m → n) : | |
(A.minor f f).is_hermitian := | |
(conj_transpose_minor _ _ _).trans (h.symm ▸ rfl) | |
/-- The real diagonal matrix `diagonal v` is hermitian. -/ | |
@[simp] lemma is_hermitian_diagonal [decidable_eq n] (v : n → ℝ) : | |
(diagonal v).is_hermitian := | |
diagonal_conj_transpose _ | |
/-- A block matrix `A.from_blocks B C D` is hermitian, | |
if `A` and `D` are hermitian and `Bᴴ = C`. -/ | |
lemma is_hermitian.from_blocks | |
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} | |
(hA : A.is_hermitian) (hBC : Bᴴ = C) (hD : D.is_hermitian) : | |
(A.from_blocks B C D).is_hermitian := | |
begin | |
have hCB : Cᴴ = B, {rw ← hBC, simp}, | |
unfold matrix.is_hermitian, | |
rw from_blocks_conj_transpose, | |
congr; | |
assumption | |
end | |
/-- This is the `iff` version of `matrix.is_hermitian.from_blocks`. -/ | |
lemma is_hermitian_from_blocks_iff | |
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} : | |
(A.from_blocks B C D).is_hermitian ↔ A.is_hermitian ∧ Bᴴ = C ∧ Cᴴ = B ∧ D.is_hermitian := | |
⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h, | |
congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩, | |
λ ⟨hA, hBC, hCB, hD⟩, is_hermitian.from_blocks hA hBC hD⟩ | |
end non_unital_semiring | |
section semiring | |
variables [semiring α] [star_ring α] [semiring β] [star_ring β] | |
@[simp] lemma is_hermitian_one [decidable_eq n] : | |
(1 : matrix n n α).is_hermitian := | |
conj_transpose_one | |
end semiring | |
section ring | |
variables [ring α] [star_ring α] [ring β] [star_ring β] | |
@[simp] lemma is_hermitian.neg {A : matrix n n α} (h : A.is_hermitian) : | |
(-A).is_hermitian := | |
(conj_transpose_neg _).trans (congr_arg _ h) | |
@[simp] lemma is_hermitian.sub {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) : | |
(A - B).is_hermitian := | |
(conj_transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl) | |
end ring | |
section is_R_or_C | |
variables [is_R_or_C α] [is_R_or_C β] | |
/-- A matrix is hermitian iff the corresponding linear map is self adjoint. -/ | |
lemma is_hermitian_iff_is_self_adjoint [fintype n] [decidable_eq n] {A : matrix n n α} : | |
is_hermitian A ↔ inner_product_space.is_self_adjoint | |
((pi_Lp.linear_equiv 2 α (λ _ : n, α)).symm.conj A.to_lin' : module.End α (pi_Lp 2 _)) := | |
begin | |
rw [inner_product_space.is_self_adjoint, (pi_Lp.equiv 2 (λ _ : n, α)).symm.surjective.forall₂], | |
simp only [linear_equiv.conj_apply, linear_map.comp_apply, linear_equiv.coe_coe, | |
pi_Lp.linear_equiv_apply, pi_Lp.linear_equiv_symm_apply, linear_equiv.symm_symm], | |
simp_rw [euclidean_space.inner_eq_star_dot_product, equiv.apply_symm_apply, to_lin'_apply, | |
star_mul_vec, dot_product_mul_vec], | |
split, | |
{ rintro (h : Aᴴ = A) x y, | |
rw h }, | |
{ intro h, | |
ext i j, | |
simpa only [(pi.single_star i 1).symm, ← star_mul_vec, mul_one, dot_product_single, | |
single_vec_mul, star_one, one_mul] using | |
h (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) i 1) | |
(@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) j 1) } | |
end | |
end is_R_or_C | |
end matrix | |