Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.08 kB
/-
Copyright (c) 2022 Alexander Bentkamp. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alexander Bentkamp
-/
import analysis.inner_product_space.spectrum
/-! # Hermitian matrices
This file defines hermitian matrices and some basic results about them.
## Main definition
* `matrix.is_hermitian` : a matrix `A : matrix n n α` is hermitian if `Aᴴ = A`.
## Tags
self-adjoint matrix, hermitian matrix
-/
namespace matrix
variables {α β : Type*} {m n : Type*} {A : matrix n n α}
open_locale matrix
local notation `⟪`x`, `y`⟫` := @inner α (pi_Lp 2 (λ (_ : n), α)) _ x y
section non_unital_semiring
variables [non_unital_semiring α] [star_ring α] [non_unital_semiring β] [star_ring β]
/-- A matrix is hermitian if it is equal to its conjugate transpose. On the reals, this definition
captures symmetric matrices. -/
def is_hermitian (A : matrix n n α) : Prop := Aᴴ = A
lemma is_hermitian.eq {A : matrix n n α} (h : A.is_hermitian) : Aᴴ = A := h
@[ext]
lemma is_hermitian.ext {A : matrix n n α} : (∀ i j, star (A j i) = A i j) → A.is_hermitian :=
by { intros h, ext i j, exact h i j }
lemma is_hermitian.apply {A : matrix n n α} (h : A.is_hermitian) (i j : n) : star (A j i) = A i j :=
by { unfold is_hermitian at h, rw [← h, conj_transpose_apply, star_star, h] }
lemma is_hermitian.ext_iff {A : matrix n n α} : A.is_hermitian ↔ ∀ i j, star (A j i) = A i j :=
⟨is_hermitian.apply, is_hermitian.ext⟩
lemma is_hermitian_mul_conj_transpose_self [fintype n] (A : matrix n n α) :
(A ⬝ Aᴴ).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]
lemma is_hermitian_transpose_mul_self [fintype n] (A : matrix n n α) :
(Aᴴ ⬝ A).is_hermitian :=
by rw [is_hermitian, conj_transpose_mul, conj_transpose_conj_transpose]
lemma is_hermitian_add_transpose_self (A : matrix n n α) :
(A + Aᴴ).is_hermitian :=
by simp [is_hermitian, add_comm]
lemma is_hermitian_transpose_add_self (A : matrix n n α) :
(Aᴴ + A).is_hermitian :=
by simp [is_hermitian, add_comm]
@[simp] lemma is_hermitian_zero :
(0 : matrix n n α).is_hermitian :=
conj_transpose_zero
@[simp] lemma is_hermitian.map {A : matrix n n α} (h : A.is_hermitian) (f : α → β)
(hf : function.semiconj f star star) :
(A.map f).is_hermitian :=
(conj_transpose_map f hf).symm.trans $ h.eq.symm ▸ rfl
@[simp] lemma is_hermitian.transpose {A : matrix n n α} (h : A.is_hermitian) :
Aᵀ.is_hermitian :=
by { rw [is_hermitian, conj_transpose, transpose_map], congr, exact h }
@[simp] lemma is_hermitian.conj_transpose {A : matrix n n α} (h : A.is_hermitian) :
Aᴴ.is_hermitian :=
h.transpose.map _ $ λ _, rfl
@[simp] lemma is_hermitian.add {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
(A + B).is_hermitian :=
(conj_transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl)
@[simp] lemma is_hermitian.minor {A : matrix n n α} (h : A.is_hermitian) (f : m → n) :
(A.minor f f).is_hermitian :=
(conj_transpose_minor _ _ _).trans (h.symm ▸ rfl)
/-- The real diagonal matrix `diagonal v` is hermitian. -/
@[simp] lemma is_hermitian_diagonal [decidable_eq n] (v : n → ℝ) :
(diagonal v).is_hermitian :=
diagonal_conj_transpose _
/-- A block matrix `A.from_blocks B C D` is hermitian,
if `A` and `D` are hermitian and `Bᴴ = C`. -/
lemma is_hermitian.from_blocks
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α}
(hA : A.is_hermitian) (hBC : Bᴴ = C) (hD : D.is_hermitian) :
(A.from_blocks B C D).is_hermitian :=
begin
have hCB : Cᴴ = B, {rw ← hBC, simp},
unfold matrix.is_hermitian,
rw from_blocks_conj_transpose,
congr;
assumption
end
/-- This is the `iff` version of `matrix.is_hermitian.from_blocks`. -/
lemma is_hermitian_from_blocks_iff
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} :
(A.from_blocks B C D).is_hermitian ↔ A.is_hermitian ∧ Bᴴ = C ∧ Cᴴ = B ∧ D.is_hermitian :=
⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h,
congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩,
λ ⟨hA, hBC, hCB, hD⟩, is_hermitian.from_blocks hA hBC hD⟩
end non_unital_semiring
section semiring
variables [semiring α] [star_ring α] [semiring β] [star_ring β]
@[simp] lemma is_hermitian_one [decidable_eq n] :
(1 : matrix n n α).is_hermitian :=
conj_transpose_one
end semiring
section ring
variables [ring α] [star_ring α] [ring β] [star_ring β]
@[simp] lemma is_hermitian.neg {A : matrix n n α} (h : A.is_hermitian) :
(-A).is_hermitian :=
(conj_transpose_neg _).trans (congr_arg _ h)
@[simp] lemma is_hermitian.sub {A B : matrix n n α} (hA : A.is_hermitian) (hB : B.is_hermitian) :
(A - B).is_hermitian :=
(conj_transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl)
end ring
section is_R_or_C
variables [is_R_or_C α] [is_R_or_C β]
/-- A matrix is hermitian iff the corresponding linear map is self adjoint. -/
lemma is_hermitian_iff_is_self_adjoint [fintype n] [decidable_eq n] {A : matrix n n α} :
is_hermitian A ↔ inner_product_space.is_self_adjoint
((pi_Lp.linear_equiv 2 α (λ _ : n, α)).symm.conj A.to_lin' : module.End α (pi_Lp 2 _)) :=
begin
rw [inner_product_space.is_self_adjoint, (pi_Lp.equiv 2 (λ _ : n, α)).symm.surjective.forall₂],
simp only [linear_equiv.conj_apply, linear_map.comp_apply, linear_equiv.coe_coe,
pi_Lp.linear_equiv_apply, pi_Lp.linear_equiv_symm_apply, linear_equiv.symm_symm],
simp_rw [euclidean_space.inner_eq_star_dot_product, equiv.apply_symm_apply, to_lin'_apply,
star_mul_vec, dot_product_mul_vec],
split,
{ rintro (h : Aᴴ = A) x y,
rw h },
{ intro h,
ext i j,
simpa only [(pi.single_star i 1).symm, ← star_mul_vec, mul_one, dot_product_single,
single_vec_mul, star_one, one_mul] using
h (@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) i 1)
(@pi.single _ _ _ (λ i, add_zero_class.to_has_zero α) j 1) }
end
end is_R_or_C
end matrix