Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson, Jalex Stark. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson, Jalex Stark | |
-/ | |
import linear_algebra.matrix.charpoly.coeff | |
import linear_algebra.matrix.to_lin | |
import ring_theory.power_basis | |
/-! | |
# The minimal polynomial divides the characteristic polynomial of a matrix. | |
-/ | |
noncomputable theory | |
universes u v | |
open polynomial matrix | |
variables {R : Type u} [comm_ring R] | |
variables {n : Type v} [decidable_eq n] [fintype n] | |
open finset | |
variable {M : matrix n n R} | |
namespace matrix | |
theorem is_integral : is_integral R M := ⟨M.charpoly, ⟨charpoly_monic M, aeval_self_charpoly M⟩⟩ | |
theorem minpoly_dvd_charpoly {K : Type*} [field K] (M : matrix n n K) : | |
(minpoly K M) ∣ M.charpoly := | |
minpoly.dvd _ _ (aeval_self_charpoly M) | |
end matrix | |
section power_basis | |
open algebra | |
/-- The characteristic polynomial of the map `λ x, a * x` is the minimal polynomial of `a`. | |
In combination with `det_eq_sign_charpoly_coeff` or `trace_eq_neg_charpoly_coeff` | |
and a bit of rewriting, this will allow us to conclude the | |
field norm resp. trace of `x` is the product resp. sum of `x`'s conjugates. | |
-/ | |
lemma charpoly_left_mul_matrix {K S : Type*} [field K] [comm_ring S] [algebra K S] | |
(h : power_basis K S) : | |
(left_mul_matrix h.basis h.gen).charpoly = minpoly K h.gen := | |
begin | |
apply minpoly.unique, | |
{ apply matrix.charpoly_monic }, | |
{ apply (injective_iff_map_eq_zero (left_mul_matrix _)).mp (left_mul_matrix_injective h.basis), | |
rw [← polynomial.aeval_alg_hom_apply, aeval_self_charpoly] }, | |
{ intros q q_monic root_q, | |
rw [matrix.charpoly_degree_eq_dim, fintype.card_fin, degree_eq_nat_degree q_monic.ne_zero], | |
apply with_bot.some_le_some.mpr, | |
exact h.dim_le_nat_degree_of_root q_monic.ne_zero root_q } | |
end | |
end power_basis | |