/- Copyright (c) 2020 Aaron Anderson, Jalex Stark. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Jalex Stark -/ import linear_algebra.matrix.charpoly.coeff import linear_algebra.matrix.to_lin import ring_theory.power_basis /-! # The minimal polynomial divides the characteristic polynomial of a matrix. -/ noncomputable theory universes u v open polynomial matrix variables {R : Type u} [comm_ring R] variables {n : Type v} [decidable_eq n] [fintype n] open finset variable {M : matrix n n R} namespace matrix theorem is_integral : is_integral R M := ⟨M.charpoly, ⟨charpoly_monic M, aeval_self_charpoly M⟩⟩ theorem minpoly_dvd_charpoly {K : Type*} [field K] (M : matrix n n K) : (minpoly K M) ∣ M.charpoly := minpoly.dvd _ _ (aeval_self_charpoly M) end matrix section power_basis open algebra /-- The characteristic polynomial of the map `λ x, a * x` is the minimal polynomial of `a`. In combination with `det_eq_sign_charpoly_coeff` or `trace_eq_neg_charpoly_coeff` and a bit of rewriting, this will allow us to conclude the field norm resp. trace of `x` is the product resp. sum of `x`'s conjugates. -/ lemma charpoly_left_mul_matrix {K S : Type*} [field K] [comm_ring S] [algebra K S] (h : power_basis K S) : (left_mul_matrix h.basis h.gen).charpoly = minpoly K h.gen := begin apply minpoly.unique, { apply matrix.charpoly_monic }, { apply (injective_iff_map_eq_zero (left_mul_matrix _)).mp (left_mul_matrix_injective h.basis), rw [← polynomial.aeval_alg_hom_apply, aeval_self_charpoly] }, { intros q q_monic root_q, rw [matrix.charpoly_degree_eq_dim, fintype.card_fin, degree_eq_nat_degree q_monic.ne_zero], apply with_bot.some_le_some.mpr, exact h.dim_le_nat_degree_of_root q_monic.ne_zero root_q } end end power_basis