Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen | |
-/ | |
import linear_algebra.matrix.reindex | |
import linear_algebra.matrix.to_lin | |
/-! | |
# Bases and matrices | |
This file defines the map `basis.to_matrix` that sends a family of vectors to | |
the matrix of their coordinates with respect to some basis. | |
## Main definitions | |
* `basis.to_matrix e v` is the matrix whose `i, j`th entry is `e.repr (v j) i` | |
* `basis.to_matrix_equiv` is `basis.to_matrix` bundled as a linear equiv | |
## Main results | |
* `linear_map.to_matrix_id_eq_basis_to_matrix`: `linear_map.to_matrix b c id` | |
is equal to `basis.to_matrix b c` | |
* `basis.to_matrix_mul_to_matrix`: multiplying `basis.to_matrix` with another | |
`basis.to_matrix` gives a `basis.to_matrix` | |
## Tags | |
matrix, basis | |
-/ | |
noncomputable theory | |
open linear_map matrix set submodule | |
open_locale big_operators | |
open_locale matrix | |
section basis_to_matrix | |
variables {ι ι' κ κ' : Type*} | |
variables {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M] | |
variables {R₂ M₂ : Type*} [comm_ring R₂] [add_comm_group M₂] [module R₂ M₂] | |
open function matrix | |
/-- From a basis `e : ι → M` and a family of vectors `v : ι' → M`, make the matrix whose columns | |
are the vectors `v i` written in the basis `e`. -/ | |
def basis.to_matrix (e : basis ι R M) (v : ι' → M) : matrix ι ι' R := | |
λ i j, e.repr (v j) i | |
variables (e : basis ι R M) (v : ι' → M) (i : ι) (j : ι') | |
namespace basis | |
lemma to_matrix_apply : e.to_matrix v i j = e.repr (v j) i := | |
rfl | |
lemma to_matrix_transpose_apply : (e.to_matrix v)ᵀ j = e.repr (v j) := | |
funext $ (λ _, rfl) | |
lemma to_matrix_eq_to_matrix_constr [fintype ι] [decidable_eq ι] (v : ι → M) : | |
e.to_matrix v = linear_map.to_matrix e e (e.constr ℕ v) := | |
by { ext, rw [basis.to_matrix_apply, linear_map.to_matrix_apply, basis.constr_basis] } | |
-- TODO (maybe) Adjust the definition of `basis.to_matrix` to eliminate the transpose. | |
lemma coe_pi_basis_fun.to_matrix_eq_transpose [fintype ι] : | |
((pi.basis_fun R ι).to_matrix : matrix ι ι R → matrix ι ι R) = matrix.transpose := | |
by { ext M i j, refl, } | |
@[simp] lemma to_matrix_self [decidable_eq ι] : e.to_matrix e = 1 := | |
begin | |
rw basis.to_matrix, | |
ext i j, | |
simp [basis.equiv_fun, matrix.one_apply, finsupp.single, eq_comm] | |
end | |
lemma to_matrix_update [decidable_eq ι'] (x : M) : | |
e.to_matrix (function.update v j x) = matrix.update_column (e.to_matrix v) j (e.repr x) := | |
begin | |
ext i' k, | |
rw [basis.to_matrix, matrix.update_column_apply, e.to_matrix_apply], | |
split_ifs, | |
{ rw [h, update_same j x v] }, | |
{ rw update_noteq h }, | |
end | |
/-- The basis constructed by `units_smul` has vectors given by a diagonal matrix. -/ | |
@[simp] lemma to_matrix_units_smul [decidable_eq ι] (e : basis ι R₂ M₂) (w : ι → R₂ˣ) : | |
e.to_matrix (e.units_smul w) = diagonal (coe ∘ w) := | |
begin | |
ext i j, | |
by_cases h : i = j, | |
{ simp [h, to_matrix_apply, units_smul_apply, units.smul_def] }, | |
{ simp [h, to_matrix_apply, units_smul_apply, units.smul_def, ne.symm h] } | |
end | |
/-- The basis constructed by `is_unit_smul` has vectors given by a diagonal matrix. -/ | |
@[simp] lemma to_matrix_is_unit_smul [decidable_eq ι] (e : basis ι R₂ M₂) {w : ι → R₂} | |
(hw : ∀ i, is_unit (w i)) : | |
e.to_matrix (e.is_unit_smul hw) = diagonal w := | |
e.to_matrix_units_smul _ | |
@[simp] lemma sum_to_matrix_smul_self [fintype ι] : ∑ (i : ι), e.to_matrix v i j • e i = v j := | |
by simp_rw [e.to_matrix_apply, e.sum_repr] | |
lemma to_matrix_map_vec_mul {S : Type*} [ring S] [algebra R S] [fintype ι] | |
(b : basis ι R S) (v : ι' → S) : | |
((b.to_matrix v).map $ algebra_map R S).vec_mul b = v := | |
begin | |
ext i, | |
simp_rw [vec_mul, dot_product, matrix.map_apply, ← algebra.commutes, ← algebra.smul_def, | |
sum_to_matrix_smul_self], | |
end | |
@[simp] lemma to_lin_to_matrix [fintype ι] [fintype ι'] [decidable_eq ι'] (v : basis ι' R M) : | |
matrix.to_lin v e (e.to_matrix v) = id := | |
v.ext (λ i, by rw [to_lin_self, id_apply, e.sum_to_matrix_smul_self]) | |
/-- From a basis `e : ι → M`, build a linear equivalence between families of vectors `v : ι → M`, | |
and matrices, making the matrix whose columns are the vectors `v i` written in the basis `e`. -/ | |
def to_matrix_equiv [fintype ι] (e : basis ι R M) : (ι → M) ≃ₗ[R] matrix ι ι R := | |
{ to_fun := e.to_matrix, | |
map_add' := λ v w, begin | |
ext i j, | |
change _ = _ + _, | |
rw [e.to_matrix_apply, pi.add_apply, linear_equiv.map_add], | |
refl | |
end, | |
map_smul' := begin | |
intros c v, | |
ext i j, | |
rw [e.to_matrix_apply, pi.smul_apply, linear_equiv.map_smul], | |
refl | |
end, | |
inv_fun := λ m j, ∑ i, (m i j) • e i, | |
left_inv := begin | |
intro v, | |
ext j, | |
exact e.sum_to_matrix_smul_self v j | |
end, | |
right_inv := begin | |
intros m, | |
ext k l, | |
simp only [e.to_matrix_apply, ← e.equiv_fun_apply, ← e.equiv_fun_symm_apply, | |
linear_equiv.apply_symm_apply], | |
end } | |
end basis | |
section mul_linear_map_to_matrix | |
variables {N : Type*} [add_comm_monoid N] [module R N] | |
variables (b : basis ι R M) (b' : basis ι' R M) (c : basis κ R N) (c' : basis κ' R N) | |
variables (f : M →ₗ[R] N) | |
open linear_map | |
section fintype | |
variables [fintype ι'] [fintype κ] [fintype κ'] | |
@[simp] lemma basis_to_matrix_mul_linear_map_to_matrix [decidable_eq ι'] : | |
c.to_matrix c' ⬝ linear_map.to_matrix b' c' f = linear_map.to_matrix b' c f := | |
(matrix.to_lin b' c).injective | |
(by haveI := classical.dec_eq κ'; | |
rw [to_lin_to_matrix, to_lin_mul b' c' c, to_lin_to_matrix, c.to_lin_to_matrix, id_comp]) | |
variable [fintype ι] | |
@[simp] lemma linear_map_to_matrix_mul_basis_to_matrix [decidable_eq ι] [decidable_eq ι'] : | |
linear_map.to_matrix b' c' f ⬝ b'.to_matrix b = linear_map.to_matrix b c' f := | |
(matrix.to_lin b c').injective | |
(by rw [to_lin_to_matrix, to_lin_mul b b' c', to_lin_to_matrix, b'.to_lin_to_matrix, comp_id]) | |
lemma basis_to_matrix_mul_linear_map_to_matrix_mul_basis_to_matrix | |
[decidable_eq ι] [decidable_eq ι'] : | |
c.to_matrix c' ⬝ linear_map.to_matrix b' c' f ⬝ b'.to_matrix b = linear_map.to_matrix b c f := | |
by rw [basis_to_matrix_mul_linear_map_to_matrix, linear_map_to_matrix_mul_basis_to_matrix] | |
lemma basis_to_matrix_mul [decidable_eq κ] | |
(b₁ : basis ι R M) (b₂ : basis ι' R M) (b₃ : basis κ R N) (A : matrix ι' κ R) : | |
b₁.to_matrix b₂ ⬝ A = linear_map.to_matrix b₃ b₁ (to_lin b₃ b₂ A) := | |
begin | |
have := basis_to_matrix_mul_linear_map_to_matrix b₃ b₁ b₂ (matrix.to_lin b₃ b₂ A), | |
rwa [linear_map.to_matrix_to_lin] at this | |
end | |
lemma mul_basis_to_matrix [decidable_eq ι] [decidable_eq ι'] | |
(b₁ : basis ι R M) (b₂ : basis ι' R M) (b₃ : basis κ R N) (A : matrix κ ι R) : | |
A ⬝ b₁.to_matrix b₂ = linear_map.to_matrix b₂ b₃ (to_lin b₁ b₃ A) := | |
begin | |
have := linear_map_to_matrix_mul_basis_to_matrix b₂ b₁ b₃ (matrix.to_lin b₁ b₃ A), | |
rwa [linear_map.to_matrix_to_lin] at this | |
end | |
lemma basis_to_matrix_basis_fun_mul (b : basis ι R (ι → R)) (A : matrix ι ι R) : | |
b.to_matrix (pi.basis_fun R ι) ⬝ A = of (λ i j, b.repr (Aᵀ j) i) := | |
begin | |
classical, | |
simp only [basis_to_matrix_mul _ _ (pi.basis_fun R ι), matrix.to_lin_eq_to_lin'], | |
ext i j, | |
rw [linear_map.to_matrix_apply, matrix.to_lin'_apply, pi.basis_fun_apply, | |
matrix.mul_vec_std_basis_apply, matrix.of_apply] | |
end | |
/-- A generalization of `linear_map.to_matrix_id`. -/ | |
@[simp] lemma linear_map.to_matrix_id_eq_basis_to_matrix [decidable_eq ι] : | |
linear_map.to_matrix b b' id = b'.to_matrix b := | |
by { haveI := classical.dec_eq ι', | |
rw [←@basis_to_matrix_mul_linear_map_to_matrix _ _ ι, to_matrix_id, matrix.mul_one] } | |
/-- See also `basis.to_matrix_reindex` which gives the `simp` normal form of this result. -/ | |
lemma basis.to_matrix_reindex' [decidable_eq ι] [decidable_eq ι'] | |
(b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') : | |
(b.reindex e).to_matrix v = matrix.reindex_alg_equiv _ e (b.to_matrix (v ∘ e)) := | |
by { ext, simp only [basis.to_matrix_apply, basis.reindex_repr, matrix.reindex_alg_equiv_apply, | |
matrix.reindex_apply, matrix.minor_apply, function.comp_app, e.apply_symm_apply] } | |
end fintype | |
/-- A generalization of `basis.to_matrix_self`, in the opposite direction. -/ | |
@[simp] lemma basis.to_matrix_mul_to_matrix {ι'' : Type*} [fintype ι'] (b'' : ι'' → M) : | |
b.to_matrix b' ⬝ b'.to_matrix b'' = b.to_matrix b'' := | |
begin | |
have := classical.dec_eq ι, | |
have := classical.dec_eq ι', | |
haveI := classical.dec_eq ι'', | |
ext i j, | |
simp only [matrix.mul_apply, basis.to_matrix_apply, basis.sum_repr_mul_repr], | |
end | |
/-- `b.to_matrix b'` and `b'.to_matrix b` are inverses. -/ | |
lemma basis.to_matrix_mul_to_matrix_flip [decidable_eq ι] [fintype ι'] : | |
b.to_matrix b' ⬝ b'.to_matrix b = 1 := | |
by rw [basis.to_matrix_mul_to_matrix, basis.to_matrix_self] | |
@[simp] | |
lemma basis.to_matrix_reindex | |
(b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') : | |
(b.reindex e).to_matrix v = (b.to_matrix v).minor e.symm id := | |
by { ext, simp only [basis.to_matrix_apply, basis.reindex_repr, matrix.minor_apply, id.def] } | |
@[simp] | |
lemma basis.to_matrix_map (b : basis ι R M) (f : M ≃ₗ[R] N) (v : ι → N) : | |
(b.map f).to_matrix v = b.to_matrix (f.symm ∘ v) := | |
by { ext, simp only [basis.to_matrix_apply, basis.map, linear_equiv.trans_apply] } | |
end mul_linear_map_to_matrix | |
end basis_to_matrix | |