Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import algebra.associated | |
import algebra.regular.basic | |
import linear_algebra.matrix.mv_polynomial | |
import linear_algebra.matrix.polynomial | |
import ring_theory.polynomial.basic | |
import tactic.linarith | |
import tactic.ring_exp | |
/-! | |
# Cramer's rule and adjugate matrices | |
The adjugate matrix is the transpose of the cofactor matrix. | |
It is calculated with Cramer's rule, which we introduce first. | |
The vectors returned by Cramer's rule are given by the linear map `cramer`, | |
which sends a matrix `A` and vector `b` to the vector consisting of the | |
determinant of replacing the `i`th column of `A` with `b` at index `i` | |
(written as `(A.update_column i b).det`). | |
Using Cramer's rule, we can compute for each matrix `A` the matrix `adjugate A`. | |
The entries of the adjugate are the determinants of each minor of `A`. | |
Instead of defining a minor to be `A` with row `i` and column `j` deleted, we | |
replace the `i`th row of `A` with the `j`th basis vector; this has the same | |
determinant as the minor but more importantly equals Cramer's rule applied | |
to `A` and the `j`th basis vector, simplifying the subsequent proofs. | |
We prove the adjugate behaves like `det A • A⁻¹`. | |
## Main definitions | |
* `matrix.cramer A b`: the vector output by Cramer's rule on `A` and `b`. | |
* `matrix.adjugate A`: the adjugate (or classical adjoint) of the matrix `A`. | |
## References | |
* https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix | |
## Tags | |
cramer, cramer's rule, adjugate | |
-/ | |
namespace matrix | |
universes u v | |
variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α] | |
open_locale matrix big_operators polynomial | |
open equiv equiv.perm finset | |
section cramer | |
/-! | |
### `cramer` section | |
Introduce the linear map `cramer` with values defined by `cramer_map`. | |
After defining `cramer_map` and showing it is linear, | |
we will restrict our proofs to using `cramer`. | |
-/ | |
variables (A : matrix n n α) (b : n → α) | |
/-- | |
`cramer_map A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, | |
and thus `cramer_map A b` is the vector output by Cramer's rule on `A` and `b`. | |
If `A ⬝ x = b` has a unique solution in `x`, `cramer_map A` sends the vector `b` to `A.det • x`. | |
Otherwise, the outcome of `cramer_map` is well-defined but not necessarily useful. | |
-/ | |
def cramer_map (i : n) : α := (A.update_column i b).det | |
lemma cramer_map_is_linear (i : n) : is_linear_map α (λ b, cramer_map A b i) := | |
{ map_add := det_update_column_add _ _, | |
map_smul := det_update_column_smul _ _ } | |
lemma cramer_is_linear : is_linear_map α (cramer_map A) := | |
begin | |
split; intros; ext i, | |
{ apply (cramer_map_is_linear A i).1 }, | |
{ apply (cramer_map_is_linear A i).2 } | |
end | |
/-- | |
`cramer A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, | |
and thus `cramer A b` is the vector output by Cramer's rule on `A` and `b`. | |
If `A ⬝ x = b` has a unique solution in `x`, `cramer A` sends the vector `b` to `A.det • x`. | |
Otherwise, the outcome of `cramer` is well-defined but not necessarily useful. | |
-/ | |
def cramer (A : matrix n n α) : (n → α) →ₗ[α] (n → α) := | |
is_linear_map.mk' (cramer_map A) (cramer_is_linear A) | |
lemma cramer_apply (i : n) : cramer A b i = (A.update_column i b).det := rfl | |
lemma cramer_transpose_apply (i : n) : cramer Aᵀ b i = (A.update_row i b).det := | |
by rw [cramer_apply, update_column_transpose, det_transpose] | |
lemma cramer_transpose_row_self (i : n) : | |
Aᵀ.cramer (A i) = pi.single i A.det := | |
begin | |
ext j, | |
rw [cramer_apply, pi.single_apply], | |
split_ifs with h, | |
{ -- i = j: this entry should be `A.det` | |
subst h, | |
simp only [update_column_transpose, det_transpose, update_row, function.update_eq_self] }, | |
{ -- i ≠ j: this entry should be 0 | |
rw [update_column_transpose, det_transpose], | |
apply det_zero_of_row_eq h, | |
rw [update_row_self, update_row_ne (ne.symm h)] } | |
end | |
lemma cramer_row_self (i : n) (h : ∀ j, b j = A j i) : | |
A.cramer b = pi.single i A.det := | |
begin | |
rw [← transpose_transpose A, det_transpose], | |
convert cramer_transpose_row_self Aᵀ i, | |
exact funext h | |
end | |
@[simp] lemma cramer_one : cramer (1 : matrix n n α) = 1 := | |
begin | |
ext i j, | |
convert congr_fun (cramer_row_self (1 : matrix n n α) (pi.single i 1) i _) j, | |
{ simp }, | |
{ intros j, rw [matrix.one_eq_pi_single, pi.single_comm] } | |
end | |
lemma cramer_smul (r : α) (A : matrix n n α) : | |
cramer (r • A) = r ^ (fintype.card n - 1) • cramer A := | |
linear_map.ext $ λ b, funext $ λ _, det_update_column_smul' _ _ _ _ | |
@[simp] lemma cramer_subsingleton_apply [subsingleton n] (A : matrix n n α) (b : n → α) (i : n) : | |
cramer A b i = b i := | |
by rw [cramer_apply, det_eq_elem_of_subsingleton _ i, update_column_self] | |
lemma cramer_zero [nontrivial n] : cramer (0 : matrix n n α) = 0 := | |
begin | |
ext i j, | |
obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, | |
apply det_eq_zero_of_column_eq_zero j', | |
intro j'', | |
simp [update_column_ne hj'], | |
end | |
/-- Use linearity of `cramer` to take it out of a summation. -/ | |
lemma sum_cramer {β} (s : finset β) (f : β → n → α) : | |
∑ x in s, cramer A (f x) = cramer A (∑ x in s, f x) := | |
(linear_map.map_sum (cramer A)).symm | |
/-- Use linearity of `cramer` and vector evaluation to take `cramer A _ i` out of a summation. -/ | |
lemma sum_cramer_apply {β} (s : finset β) (f : n → β → α) (i : n) : | |
∑ x in s, cramer A (λ j, f j x) i = cramer A (λ (j : n), ∑ x in s, f j x) i := | |
calc ∑ x in s, cramer A (λ j, f j x) i | |
= (∑ x in s, cramer A (λ j, f j x)) i : (finset.sum_apply i s _).symm | |
... = cramer A (λ (j : n), ∑ x in s, f j x) i : | |
by { rw [sum_cramer, cramer_apply], congr' with j, apply finset.sum_apply } | |
end cramer | |
section adjugate | |
/-! | |
### `adjugate` section | |
Define the `adjugate` matrix and a few equations. | |
These will hold for any matrix over a commutative ring. | |
-/ | |
/-- The adjugate matrix is the transpose of the cofactor matrix. | |
Typically, the cofactor matrix is defined by taking the determinant of minors, | |
i.e. the matrix with a row and column removed. | |
However, the proof of `mul_adjugate` becomes a lot easier if we define the | |
minor as replacing a column with a basis vector, since it allows us to use | |
facts about the `cramer` map. | |
-/ | |
def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1) | |
lemma adjugate_def (A : matrix n n α) : | |
adjugate A = λ i, cramer Aᵀ (pi.single i 1) := rfl | |
lemma adjugate_apply (A : matrix n n α) (i j : n) : | |
adjugate A i j = (A.update_row j (pi.single i 1)).det := | |
by { rw adjugate_def, simp only, rw [cramer_apply, update_column_transpose, det_transpose], } | |
lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) := | |
begin | |
ext i j, | |
rw [transpose_apply, adjugate_apply, adjugate_apply, update_row_transpose, det_transpose], | |
rw [det_apply', det_apply'], | |
apply finset.sum_congr rfl, | |
intros σ _, | |
congr' 1, | |
by_cases i = σ j, | |
{ -- Everything except `(i , j)` (= `(σ j , j)`) is given by A, and the rest is a single `1`. | |
congr; ext j', | |
subst h, | |
have : σ j' = σ j ↔ j' = j := σ.injective.eq_iff, | |
rw [update_row_apply, update_column_apply], | |
simp_rw this, | |
rw [←dite_eq_ite, ←dite_eq_ite], | |
congr' 1 with rfl, | |
rw [pi.single_eq_same, pi.single_eq_same], }, | |
{ -- Otherwise, we need to show that there is a `0` somewhere in the product. | |
have : (∏ j' : n, update_column A j (pi.single i 1) (σ j') j') = 0, | |
{ apply prod_eq_zero (mem_univ j), | |
rw [update_column_self, pi.single_eq_of_ne' h], }, | |
rw this, | |
apply prod_eq_zero (mem_univ (σ⁻¹ i)), | |
erw [apply_symm_apply σ i, update_row_self], | |
apply pi.single_eq_of_ne, | |
intro h', | |
exact h ((symm_apply_eq σ).mp h') } | |
end | |
/-- Since the map `b ↦ cramer A b` is linear in `b`, it must be multiplication by some matrix. This | |
matrix is `A.adjugate`. -/ | |
lemma cramer_eq_adjugate_mul_vec (A : matrix n n α) (b : n → α) : | |
cramer A b = A.adjugate.mul_vec b := | |
begin | |
nth_rewrite 1 ← A.transpose_transpose, | |
rw [← adjugate_transpose, adjugate_def], | |
have : b = ∑ i, (b i) • (pi.single i 1), | |
{ refine (pi_eq_sum_univ b).trans _, congr' with j, simp [pi.single_apply, eq_comm] }, | |
nth_rewrite 0 this, ext k, | |
simp [mul_vec, dot_product, mul_comm], | |
end | |
lemma mul_adjugate_apply (A : matrix n n α) (i j k) : | |
A i k * adjugate A k j = cramer Aᵀ (pi.single k (A i k)) j := | |
begin | |
erw [←smul_eq_mul, ←pi.smul_apply, ←linear_map.map_smul, ←pi.single_smul', smul_eq_mul, mul_one], | |
end | |
lemma mul_adjugate (A : matrix n n α) : A ⬝ adjugate A = A.det • 1 := | |
begin | |
ext i j, | |
rw [mul_apply, pi.smul_apply, pi.smul_apply, one_apply, smul_eq_mul, mul_boole], | |
simp [mul_adjugate_apply, sum_cramer_apply, cramer_transpose_row_self, pi.single_apply, eq_comm] | |
end | |
lemma adjugate_mul (A : matrix n n α) : adjugate A ⬝ A = A.det • 1 := | |
calc adjugate A ⬝ A = (Aᵀ ⬝ (adjugate Aᵀ))ᵀ : | |
by rw [←adjugate_transpose, ←transpose_mul, transpose_transpose] | |
... = A.det • 1 : by rw [mul_adjugate (Aᵀ), det_transpose, transpose_smul, transpose_one] | |
lemma adjugate_smul (r : α) (A : matrix n n α) : | |
adjugate (r • A) = r ^ (fintype.card n - 1) • adjugate A := | |
begin | |
rw [adjugate, adjugate, transpose_smul, cramer_smul], | |
refl, | |
end | |
/-- A stronger form of **Cramer's rule** that allows us to solve some instances of `A ⬝ x = b` even | |
if the determinant is not a unit. A sufficient (but still not necessary) condition is that `A.det` | |
divides `b`. -/ | |
@[simp] lemma mul_vec_cramer (A : matrix n n α) (b : n → α) : | |
A.mul_vec (cramer A b) = A.det • b := | |
by rw [cramer_eq_adjugate_mul_vec, mul_vec_mul_vec, mul_adjugate, smul_mul_vec_assoc, one_mul_vec] | |
lemma adjugate_subsingleton [subsingleton n] (A : matrix n n α) : adjugate A = 1 := | |
begin | |
ext i j, | |
simp [subsingleton.elim i j, adjugate_apply, det_eq_elem_of_subsingleton _ i] | |
end | |
lemma adjugate_eq_one_of_card_eq_one {A : matrix n n α} (h : fintype.card n = 1) : adjugate A = 1 := | |
begin | |
haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le, | |
exact adjugate_subsingleton _ | |
end | |
@[simp] lemma adjugate_zero [nontrivial n] : adjugate (0 : matrix n n α) = 0 := | |
begin | |
ext i j, | |
obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, | |
apply det_eq_zero_of_column_eq_zero j', | |
intro j'', | |
simp [update_column_ne hj'], | |
end | |
@[simp] lemma adjugate_one : adjugate (1 : matrix n n α) = 1 := | |
by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] } | |
@[simp] lemma adjugate_diagonal (v : n → α) : | |
adjugate (diagonal v) = diagonal (λ i, ∏ j in finset.univ.erase i, v j) := | |
begin | |
ext, | |
simp only [adjugate_def, cramer_apply, diagonal_transpose], | |
obtain rfl | hij := eq_or_ne i j, | |
{ rw [diagonal_apply_eq, diagonal_update_column_single, det_diagonal, | |
prod_update_of_mem (finset.mem_univ _), sdiff_singleton_eq_erase, one_mul] }, | |
{ rw diagonal_apply_ne _ hij, | |
refine det_eq_zero_of_row_eq_zero j (λ k, _), | |
obtain rfl | hjk := eq_or_ne k j, | |
{ rw [update_column_self, pi.single_eq_of_ne' hij] }, | |
{ rw [update_column_ne hjk, diagonal_apply_ne' _ hjk]} }, | |
end | |
lemma _root_.ring_hom.map_adjugate {R S : Type*} [comm_ring R] [comm_ring S] (f : R →+* S) | |
(M : matrix n n R) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := | |
begin | |
ext i k, | |
have : pi.single i (1 : S) = f ∘ pi.single i 1, | |
{ rw ←f.map_one, | |
exact pi.single_op (λ i, f) (λ i, f.map_zero) i (1 : R) }, | |
rw [adjugate_apply, ring_hom.map_matrix_apply, map_apply, ring_hom.map_matrix_apply, | |
this, ←map_update_row, ←ring_hom.map_matrix_apply, ←ring_hom.map_det, ←adjugate_apply] | |
end | |
lemma _root_.alg_hom.map_adjugate {R A B : Type*} [comm_semiring R] [comm_ring A] [comm_ring B] | |
[algebra R A] [algebra R B] (f : A →ₐ[R] B) | |
(M : matrix n n A) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := | |
f.to_ring_hom.map_adjugate _ | |
lemma det_adjugate (A : matrix n n α) : (adjugate A).det = A.det ^ (fintype.card n - 1) := | |
begin | |
-- get rid of the `- 1` | |
cases (fintype.card n).eq_zero_or_pos with h_card h_card, | |
{ haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card, | |
rw [h_card, nat.zero_sub, pow_zero, adjugate_subsingleton, det_one] }, | |
replace h_card := tsub_add_cancel_of_le h_card.nat_succ_le, | |
-- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring | |
-- where `A'.det` is non-zero. | |
let A' := mv_polynomial_X n n ℤ, | |
suffices : A'.adjugate.det = A'.det ^ (fintype.card n - 1), | |
{ rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_det, | |
←alg_hom.map_det, ←alg_hom.map_pow, this] }, | |
apply mul_left_cancel₀ (show A'.det ≠ 0, from det_mv_polynomial_X_ne_zero n ℤ), | |
calc A'.det * A'.adjugate.det | |
= (A' ⬝ adjugate A').det : (det_mul _ _).symm | |
... = A'.det ^ fintype.card n : by rw [mul_adjugate, det_smul, det_one, mul_one] | |
... = A'.det * A'.det ^ (fintype.card n - 1) : by rw [←pow_succ, h_card], | |
end | |
@[simp] lemma adjugate_fin_zero (A : matrix (fin 0) (fin 0) α) : adjugate A = 0 := | |
@subsingleton.elim _ matrix.subsingleton_of_empty_left _ _ | |
@[simp] lemma adjugate_fin_one (A : matrix (fin 1) (fin 1) α) : adjugate A = 1 := | |
adjugate_subsingleton A | |
lemma adjugate_fin_two (A : matrix (fin 2) (fin 2) α) : | |
adjugate A = !![A 1 1, -A 0 1; -A 1 0, A 0 0] := | |
begin | |
ext i j, | |
rw [adjugate_apply, det_fin_two], | |
fin_cases i with [0, 1]; fin_cases j with [0, 1]; | |
simp only [nat.one_ne_zero, one_mul, fin.one_eq_zero_iff, pi.single_eq_same, zero_mul, | |
fin.zero_eq_one_iff, sub_zero, pi.single_eq_of_ne, ne.def, not_false_iff, update_row_self, | |
update_row_ne, cons_val_zero, mul_zero, mul_one, zero_sub, cons_val_one, head_cons, of_apply], | |
end | |
@[simp] lemma adjugate_fin_two_of (a b c d : α) : | |
adjugate !![a, b; c, d] = !![d, -b; -c, a] := | |
adjugate_fin_two _ | |
lemma adjugate_conj_transpose [star_ring α] (A : matrix n n α) : A.adjugateᴴ = adjugate (Aᴴ) := | |
begin | |
dsimp only [conj_transpose], | |
have : Aᵀ.adjugate.map star = adjugate (Aᵀ.map star) := ((star_ring_end α).map_adjugate Aᵀ), | |
rw [A.adjugate_transpose, this], | |
end | |
lemma is_regular_of_is_left_regular_det {A : matrix n n α} (hA : is_left_regular A.det) : | |
is_regular A := | |
begin | |
split, | |
{ intros B C h, | |
refine hA.matrix _, | |
rw [←matrix.one_mul B, ←matrix.one_mul C, ←matrix.smul_mul, ←matrix.smul_mul, ←adjugate_mul, | |
matrix.mul_assoc, matrix.mul_assoc, ←mul_eq_mul A, h, mul_eq_mul] }, | |
{ intros B C h, | |
simp only [mul_eq_mul] at h, | |
refine hA.matrix _, | |
rw [←matrix.mul_one B, ←matrix.mul_one C, ←matrix.mul_smul, ←matrix.mul_smul, ←mul_adjugate, | |
←matrix.mul_assoc, ←matrix.mul_assoc, h] } | |
end | |
lemma adjugate_mul_distrib_aux (A B : matrix n n α) | |
(hA : is_left_regular A.det) | |
(hB : is_left_regular B.det) : | |
adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := | |
begin | |
have hAB : is_left_regular (A ⬝ B).det, | |
{ rw [det_mul], | |
exact hA.mul hB }, | |
refine (is_regular_of_is_left_regular_det hAB).left _, | |
rw [mul_eq_mul, mul_adjugate, mul_eq_mul, matrix.mul_assoc, ←matrix.mul_assoc B, mul_adjugate, | |
smul_mul, matrix.one_mul, mul_smul, mul_adjugate, smul_smul, mul_comm, ←det_mul] | |
end | |
/-- | |
Proof follows from "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3 | |
-/ | |
lemma adjugate_mul_distrib (A B : matrix n n α) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := | |
begin | |
let g : matrix n n α → matrix n n α[X] := | |
λ M, M.map polynomial.C + (polynomial.X : α[X]) • 1, | |
let f' : matrix n n α[X] →+* matrix n n α := (polynomial.eval_ring_hom 0).map_matrix, | |
have f'_inv : ∀ M, f' (g M) = M, | |
{ intro, | |
ext, | |
simp [f', g], }, | |
have f'_adj : ∀ (M : matrix n n α), f' (adjugate (g M)) = adjugate M, | |
{ intro, | |
rw [ring_hom.map_adjugate, f'_inv] }, | |
have f'_g_mul : ∀ (M N : matrix n n α), f' (g M ⬝ g N) = M ⬝ N, | |
{ intros, | |
rw [←mul_eq_mul, ring_hom.map_mul, f'_inv, f'_inv, mul_eq_mul] }, | |
have hu : ∀ (M : matrix n n α), is_regular (g M).det, | |
{ intros M, | |
refine polynomial.monic.is_regular _, | |
simp only [g, polynomial.monic.def, ←polynomial.leading_coeff_det_X_one_add_C M, add_comm] }, | |
rw [←f'_adj, ←f'_adj, ←f'_adj, ←mul_eq_mul (f' (adjugate (g B))), ←f'.map_mul, mul_eq_mul, | |
←adjugate_mul_distrib_aux _ _ (hu A).left (hu B).left, ring_hom.map_adjugate, | |
ring_hom.map_adjugate, f'_inv, f'_g_mul] | |
end | |
@[simp] lemma adjugate_pow (A : matrix n n α) (k : ℕ) : | |
adjugate (A ^ k) = (adjugate A) ^ k := | |
begin | |
induction k with k IH, | |
{ simp }, | |
{ rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ←mul_eq_mul, pow_succ] } | |
end | |
lemma det_smul_adjugate_adjugate (A : matrix n n α) : | |
det A • adjugate (adjugate A) = det A ^ (fintype.card n - 1) • A := | |
begin | |
have : A ⬝ (A.adjugate ⬝ A.adjugate.adjugate) = A ⬝ (A.det ^ (fintype.card n - 1) • 1), | |
{ rw [←adjugate_mul_distrib, adjugate_mul, adjugate_smul, adjugate_one], }, | |
rwa [←matrix.mul_assoc, mul_adjugate, matrix.mul_smul, matrix.mul_one, matrix.smul_mul, | |
matrix.one_mul] at this, | |
end | |
/-- Note that this is not true for `fintype.card n = 1` since `1 - 2 = 0` and not `-1`. -/ | |
lemma adjugate_adjugate (A : matrix n n α) (h : fintype.card n ≠ 1) : | |
adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A := | |
begin | |
-- get rid of the `- 2` | |
cases h_card : (fintype.card n) with n', | |
{ haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card, | |
exact @subsingleton.elim _ (matrix.subsingleton_of_empty_left) _ _, }, | |
cases n', | |
{ exact (h h_card).elim }, | |
rw ←h_card, | |
-- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring | |
-- where `A'.det` is non-zero. | |
let A' := mv_polynomial_X n n ℤ, | |
suffices : adjugate (adjugate A') = det A' ^ (fintype.card n - 2) • A', | |
{ rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_adjugate, this, | |
←alg_hom.map_det, ← alg_hom.map_pow, alg_hom.map_matrix_apply, alg_hom.map_matrix_apply, | |
matrix.map_smul' _ _ _ (_root_.map_mul _)] }, | |
have h_card' : fintype.card n - 2 + 1 = fintype.card n - 1, | |
{ simp [h_card] }, | |
have is_reg : is_smul_regular (mv_polynomial (n × n) ℤ) (det A') := | |
λ x y, mul_left_cancel₀ (det_mv_polynomial_X_ne_zero n ℤ), | |
apply is_reg.matrix, | |
rw [smul_smul, ←pow_succ, h_card', det_smul_adjugate_adjugate], | |
end | |
/-- A weaker version of `matrix.adjugate_adjugate` that uses `nontrivial`. -/ | |
lemma adjugate_adjugate' (A : matrix n n α) [nontrivial n] : | |
adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A := | |
adjugate_adjugate _ $ fintype.one_lt_card.ne' | |
end adjugate | |
end matrix | |