/- Copyright (c) 2019 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import algebra.associated import algebra.regular.basic import linear_algebra.matrix.mv_polynomial import linear_algebra.matrix.polynomial import ring_theory.polynomial.basic import tactic.linarith import tactic.ring_exp /-! # Cramer's rule and adjugate matrices The adjugate matrix is the transpose of the cofactor matrix. It is calculated with Cramer's rule, which we introduce first. The vectors returned by Cramer's rule are given by the linear map `cramer`, which sends a matrix `A` and vector `b` to the vector consisting of the determinant of replacing the `i`th column of `A` with `b` at index `i` (written as `(A.update_column i b).det`). Using Cramer's rule, we can compute for each matrix `A` the matrix `adjugate A`. The entries of the adjugate are the determinants of each minor of `A`. Instead of defining a minor to be `A` with row `i` and column `j` deleted, we replace the `i`th row of `A` with the `j`th basis vector; this has the same determinant as the minor but more importantly equals Cramer's rule applied to `A` and the `j`th basis vector, simplifying the subsequent proofs. We prove the adjugate behaves like `det A • A⁻¹`. ## Main definitions * `matrix.cramer A b`: the vector output by Cramer's rule on `A` and `b`. * `matrix.adjugate A`: the adjugate (or classical adjoint) of the matrix `A`. ## References * https://en.wikipedia.org/wiki/Cramer's_rule#Finding_inverse_matrix ## Tags cramer, cramer's rule, adjugate -/ namespace matrix universes u v variables {n : Type u} [decidable_eq n] [fintype n] {α : Type v} [comm_ring α] open_locale matrix big_operators polynomial open equiv equiv.perm finset section cramer /-! ### `cramer` section Introduce the linear map `cramer` with values defined by `cramer_map`. After defining `cramer_map` and showing it is linear, we will restrict our proofs to using `cramer`. -/ variables (A : matrix n n α) (b : n → α) /-- `cramer_map A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, and thus `cramer_map A b` is the vector output by Cramer's rule on `A` and `b`. If `A ⬝ x = b` has a unique solution in `x`, `cramer_map A` sends the vector `b` to `A.det • x`. Otherwise, the outcome of `cramer_map` is well-defined but not necessarily useful. -/ def cramer_map (i : n) : α := (A.update_column i b).det lemma cramer_map_is_linear (i : n) : is_linear_map α (λ b, cramer_map A b i) := { map_add := det_update_column_add _ _, map_smul := det_update_column_smul _ _ } lemma cramer_is_linear : is_linear_map α (cramer_map A) := begin split; intros; ext i, { apply (cramer_map_is_linear A i).1 }, { apply (cramer_map_is_linear A i).2 } end /-- `cramer A b i` is the determinant of the matrix `A` with column `i` replaced with `b`, and thus `cramer A b` is the vector output by Cramer's rule on `A` and `b`. If `A ⬝ x = b` has a unique solution in `x`, `cramer A` sends the vector `b` to `A.det • x`. Otherwise, the outcome of `cramer` is well-defined but not necessarily useful. -/ def cramer (A : matrix n n α) : (n → α) →ₗ[α] (n → α) := is_linear_map.mk' (cramer_map A) (cramer_is_linear A) lemma cramer_apply (i : n) : cramer A b i = (A.update_column i b).det := rfl lemma cramer_transpose_apply (i : n) : cramer Aᵀ b i = (A.update_row i b).det := by rw [cramer_apply, update_column_transpose, det_transpose] lemma cramer_transpose_row_self (i : n) : Aᵀ.cramer (A i) = pi.single i A.det := begin ext j, rw [cramer_apply, pi.single_apply], split_ifs with h, { -- i = j: this entry should be `A.det` subst h, simp only [update_column_transpose, det_transpose, update_row, function.update_eq_self] }, { -- i ≠ j: this entry should be 0 rw [update_column_transpose, det_transpose], apply det_zero_of_row_eq h, rw [update_row_self, update_row_ne (ne.symm h)] } end lemma cramer_row_self (i : n) (h : ∀ j, b j = A j i) : A.cramer b = pi.single i A.det := begin rw [← transpose_transpose A, det_transpose], convert cramer_transpose_row_self Aᵀ i, exact funext h end @[simp] lemma cramer_one : cramer (1 : matrix n n α) = 1 := begin ext i j, convert congr_fun (cramer_row_self (1 : matrix n n α) (pi.single i 1) i _) j, { simp }, { intros j, rw [matrix.one_eq_pi_single, pi.single_comm] } end lemma cramer_smul (r : α) (A : matrix n n α) : cramer (r • A) = r ^ (fintype.card n - 1) • cramer A := linear_map.ext $ λ b, funext $ λ _, det_update_column_smul' _ _ _ _ @[simp] lemma cramer_subsingleton_apply [subsingleton n] (A : matrix n n α) (b : n → α) (i : n) : cramer A b i = b i := by rw [cramer_apply, det_eq_elem_of_subsingleton _ i, update_column_self] lemma cramer_zero [nontrivial n] : cramer (0 : matrix n n α) = 0 := begin ext i j, obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, apply det_eq_zero_of_column_eq_zero j', intro j'', simp [update_column_ne hj'], end /-- Use linearity of `cramer` to take it out of a summation. -/ lemma sum_cramer {β} (s : finset β) (f : β → n → α) : ∑ x in s, cramer A (f x) = cramer A (∑ x in s, f x) := (linear_map.map_sum (cramer A)).symm /-- Use linearity of `cramer` and vector evaluation to take `cramer A _ i` out of a summation. -/ lemma sum_cramer_apply {β} (s : finset β) (f : n → β → α) (i : n) : ∑ x in s, cramer A (λ j, f j x) i = cramer A (λ (j : n), ∑ x in s, f j x) i := calc ∑ x in s, cramer A (λ j, f j x) i = (∑ x in s, cramer A (λ j, f j x)) i : (finset.sum_apply i s _).symm ... = cramer A (λ (j : n), ∑ x in s, f j x) i : by { rw [sum_cramer, cramer_apply], congr' with j, apply finset.sum_apply } end cramer section adjugate /-! ### `adjugate` section Define the `adjugate` matrix and a few equations. These will hold for any matrix over a commutative ring. -/ /-- The adjugate matrix is the transpose of the cofactor matrix. Typically, the cofactor matrix is defined by taking the determinant of minors, i.e. the matrix with a row and column removed. However, the proof of `mul_adjugate` becomes a lot easier if we define the minor as replacing a column with a basis vector, since it allows us to use facts about the `cramer` map. -/ def adjugate (A : matrix n n α) : matrix n n α := λ i, cramer Aᵀ (pi.single i 1) lemma adjugate_def (A : matrix n n α) : adjugate A = λ i, cramer Aᵀ (pi.single i 1) := rfl lemma adjugate_apply (A : matrix n n α) (i j : n) : adjugate A i j = (A.update_row j (pi.single i 1)).det := by { rw adjugate_def, simp only, rw [cramer_apply, update_column_transpose, det_transpose], } lemma adjugate_transpose (A : matrix n n α) : (adjugate A)ᵀ = adjugate (Aᵀ) := begin ext i j, rw [transpose_apply, adjugate_apply, adjugate_apply, update_row_transpose, det_transpose], rw [det_apply', det_apply'], apply finset.sum_congr rfl, intros σ _, congr' 1, by_cases i = σ j, { -- Everything except `(i , j)` (= `(σ j , j)`) is given by A, and the rest is a single `1`. congr; ext j', subst h, have : σ j' = σ j ↔ j' = j := σ.injective.eq_iff, rw [update_row_apply, update_column_apply], simp_rw this, rw [←dite_eq_ite, ←dite_eq_ite], congr' 1 with rfl, rw [pi.single_eq_same, pi.single_eq_same], }, { -- Otherwise, we need to show that there is a `0` somewhere in the product. have : (∏ j' : n, update_column A j (pi.single i 1) (σ j') j') = 0, { apply prod_eq_zero (mem_univ j), rw [update_column_self, pi.single_eq_of_ne' h], }, rw this, apply prod_eq_zero (mem_univ (σ⁻¹ i)), erw [apply_symm_apply σ i, update_row_self], apply pi.single_eq_of_ne, intro h', exact h ((symm_apply_eq σ).mp h') } end /-- Since the map `b ↦ cramer A b` is linear in `b`, it must be multiplication by some matrix. This matrix is `A.adjugate`. -/ lemma cramer_eq_adjugate_mul_vec (A : matrix n n α) (b : n → α) : cramer A b = A.adjugate.mul_vec b := begin nth_rewrite 1 ← A.transpose_transpose, rw [← adjugate_transpose, adjugate_def], have : b = ∑ i, (b i) • (pi.single i 1), { refine (pi_eq_sum_univ b).trans _, congr' with j, simp [pi.single_apply, eq_comm] }, nth_rewrite 0 this, ext k, simp [mul_vec, dot_product, mul_comm], end lemma mul_adjugate_apply (A : matrix n n α) (i j k) : A i k * adjugate A k j = cramer Aᵀ (pi.single k (A i k)) j := begin erw [←smul_eq_mul, ←pi.smul_apply, ←linear_map.map_smul, ←pi.single_smul', smul_eq_mul, mul_one], end lemma mul_adjugate (A : matrix n n α) : A ⬝ adjugate A = A.det • 1 := begin ext i j, rw [mul_apply, pi.smul_apply, pi.smul_apply, one_apply, smul_eq_mul, mul_boole], simp [mul_adjugate_apply, sum_cramer_apply, cramer_transpose_row_self, pi.single_apply, eq_comm] end lemma adjugate_mul (A : matrix n n α) : adjugate A ⬝ A = A.det • 1 := calc adjugate A ⬝ A = (Aᵀ ⬝ (adjugate Aᵀ))ᵀ : by rw [←adjugate_transpose, ←transpose_mul, transpose_transpose] ... = A.det • 1 : by rw [mul_adjugate (Aᵀ), det_transpose, transpose_smul, transpose_one] lemma adjugate_smul (r : α) (A : matrix n n α) : adjugate (r • A) = r ^ (fintype.card n - 1) • adjugate A := begin rw [adjugate, adjugate, transpose_smul, cramer_smul], refl, end /-- A stronger form of **Cramer's rule** that allows us to solve some instances of `A ⬝ x = b` even if the determinant is not a unit. A sufficient (but still not necessary) condition is that `A.det` divides `b`. -/ @[simp] lemma mul_vec_cramer (A : matrix n n α) (b : n → α) : A.mul_vec (cramer A b) = A.det • b := by rw [cramer_eq_adjugate_mul_vec, mul_vec_mul_vec, mul_adjugate, smul_mul_vec_assoc, one_mul_vec] lemma adjugate_subsingleton [subsingleton n] (A : matrix n n α) : adjugate A = 1 := begin ext i j, simp [subsingleton.elim i j, adjugate_apply, det_eq_elem_of_subsingleton _ i] end lemma adjugate_eq_one_of_card_eq_one {A : matrix n n α} (h : fintype.card n = 1) : adjugate A = 1 := begin haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le, exact adjugate_subsingleton _ end @[simp] lemma adjugate_zero [nontrivial n] : adjugate (0 : matrix n n α) = 0 := begin ext i j, obtain ⟨j', hj'⟩ : ∃ j', j' ≠ j := exists_ne j, apply det_eq_zero_of_column_eq_zero j', intro j'', simp [update_column_ne hj'], end @[simp] lemma adjugate_one : adjugate (1 : matrix n n α) = 1 := by { ext, simp [adjugate_def, matrix.one_apply, pi.single_apply, eq_comm] } @[simp] lemma adjugate_diagonal (v : n → α) : adjugate (diagonal v) = diagonal (λ i, ∏ j in finset.univ.erase i, v j) := begin ext, simp only [adjugate_def, cramer_apply, diagonal_transpose], obtain rfl | hij := eq_or_ne i j, { rw [diagonal_apply_eq, diagonal_update_column_single, det_diagonal, prod_update_of_mem (finset.mem_univ _), sdiff_singleton_eq_erase, one_mul] }, { rw diagonal_apply_ne _ hij, refine det_eq_zero_of_row_eq_zero j (λ k, _), obtain rfl | hjk := eq_or_ne k j, { rw [update_column_self, pi.single_eq_of_ne' hij] }, { rw [update_column_ne hjk, diagonal_apply_ne' _ hjk]} }, end lemma _root_.ring_hom.map_adjugate {R S : Type*} [comm_ring R] [comm_ring S] (f : R →+* S) (M : matrix n n R) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := begin ext i k, have : pi.single i (1 : S) = f ∘ pi.single i 1, { rw ←f.map_one, exact pi.single_op (λ i, f) (λ i, f.map_zero) i (1 : R) }, rw [adjugate_apply, ring_hom.map_matrix_apply, map_apply, ring_hom.map_matrix_apply, this, ←map_update_row, ←ring_hom.map_matrix_apply, ←ring_hom.map_det, ←adjugate_apply] end lemma _root_.alg_hom.map_adjugate {R A B : Type*} [comm_semiring R] [comm_ring A] [comm_ring B] [algebra R A] [algebra R B] (f : A →ₐ[R] B) (M : matrix n n A) : f.map_matrix M.adjugate = matrix.adjugate (f.map_matrix M) := f.to_ring_hom.map_adjugate _ lemma det_adjugate (A : matrix n n α) : (adjugate A).det = A.det ^ (fintype.card n - 1) := begin -- get rid of the `- 1` cases (fintype.card n).eq_zero_or_pos with h_card h_card, { haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card, rw [h_card, nat.zero_sub, pow_zero, adjugate_subsingleton, det_one] }, replace h_card := tsub_add_cancel_of_le h_card.nat_succ_le, -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring -- where `A'.det` is non-zero. let A' := mv_polynomial_X n n ℤ, suffices : A'.adjugate.det = A'.det ^ (fintype.card n - 1), { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_det, ←alg_hom.map_det, ←alg_hom.map_pow, this] }, apply mul_left_cancel₀ (show A'.det ≠ 0, from det_mv_polynomial_X_ne_zero n ℤ), calc A'.det * A'.adjugate.det = (A' ⬝ adjugate A').det : (det_mul _ _).symm ... = A'.det ^ fintype.card n : by rw [mul_adjugate, det_smul, det_one, mul_one] ... = A'.det * A'.det ^ (fintype.card n - 1) : by rw [←pow_succ, h_card], end @[simp] lemma adjugate_fin_zero (A : matrix (fin 0) (fin 0) α) : adjugate A = 0 := @subsingleton.elim _ matrix.subsingleton_of_empty_left _ _ @[simp] lemma adjugate_fin_one (A : matrix (fin 1) (fin 1) α) : adjugate A = 1 := adjugate_subsingleton A lemma adjugate_fin_two (A : matrix (fin 2) (fin 2) α) : adjugate A = !![A 1 1, -A 0 1; -A 1 0, A 0 0] := begin ext i j, rw [adjugate_apply, det_fin_two], fin_cases i with [0, 1]; fin_cases j with [0, 1]; simp only [nat.one_ne_zero, one_mul, fin.one_eq_zero_iff, pi.single_eq_same, zero_mul, fin.zero_eq_one_iff, sub_zero, pi.single_eq_of_ne, ne.def, not_false_iff, update_row_self, update_row_ne, cons_val_zero, mul_zero, mul_one, zero_sub, cons_val_one, head_cons, of_apply], end @[simp] lemma adjugate_fin_two_of (a b c d : α) : adjugate !![a, b; c, d] = !![d, -b; -c, a] := adjugate_fin_two _ lemma adjugate_conj_transpose [star_ring α] (A : matrix n n α) : A.adjugateᴴ = adjugate (Aᴴ) := begin dsimp only [conj_transpose], have : Aᵀ.adjugate.map star = adjugate (Aᵀ.map star) := ((star_ring_end α).map_adjugate Aᵀ), rw [A.adjugate_transpose, this], end lemma is_regular_of_is_left_regular_det {A : matrix n n α} (hA : is_left_regular A.det) : is_regular A := begin split, { intros B C h, refine hA.matrix _, rw [←matrix.one_mul B, ←matrix.one_mul C, ←matrix.smul_mul, ←matrix.smul_mul, ←adjugate_mul, matrix.mul_assoc, matrix.mul_assoc, ←mul_eq_mul A, h, mul_eq_mul] }, { intros B C h, simp only [mul_eq_mul] at h, refine hA.matrix _, rw [←matrix.mul_one B, ←matrix.mul_one C, ←matrix.mul_smul, ←matrix.mul_smul, ←mul_adjugate, ←matrix.mul_assoc, ←matrix.mul_assoc, h] } end lemma adjugate_mul_distrib_aux (A B : matrix n n α) (hA : is_left_regular A.det) (hB : is_left_regular B.det) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := begin have hAB : is_left_regular (A ⬝ B).det, { rw [det_mul], exact hA.mul hB }, refine (is_regular_of_is_left_regular_det hAB).left _, rw [mul_eq_mul, mul_adjugate, mul_eq_mul, matrix.mul_assoc, ←matrix.mul_assoc B, mul_adjugate, smul_mul, matrix.one_mul, mul_smul, mul_adjugate, smul_smul, mul_comm, ←det_mul] end /-- Proof follows from "The trace Cayley-Hamilton theorem" by Darij Grinberg, Section 5.3 -/ lemma adjugate_mul_distrib (A B : matrix n n α) : adjugate (A ⬝ B) = adjugate B ⬝ adjugate A := begin let g : matrix n n α → matrix n n α[X] := λ M, M.map polynomial.C + (polynomial.X : α[X]) • 1, let f' : matrix n n α[X] →+* matrix n n α := (polynomial.eval_ring_hom 0).map_matrix, have f'_inv : ∀ M, f' (g M) = M, { intro, ext, simp [f', g], }, have f'_adj : ∀ (M : matrix n n α), f' (adjugate (g M)) = adjugate M, { intro, rw [ring_hom.map_adjugate, f'_inv] }, have f'_g_mul : ∀ (M N : matrix n n α), f' (g M ⬝ g N) = M ⬝ N, { intros, rw [←mul_eq_mul, ring_hom.map_mul, f'_inv, f'_inv, mul_eq_mul] }, have hu : ∀ (M : matrix n n α), is_regular (g M).det, { intros M, refine polynomial.monic.is_regular _, simp only [g, polynomial.monic.def, ←polynomial.leading_coeff_det_X_one_add_C M, add_comm] }, rw [←f'_adj, ←f'_adj, ←f'_adj, ←mul_eq_mul (f' (adjugate (g B))), ←f'.map_mul, mul_eq_mul, ←adjugate_mul_distrib_aux _ _ (hu A).left (hu B).left, ring_hom.map_adjugate, ring_hom.map_adjugate, f'_inv, f'_g_mul] end @[simp] lemma adjugate_pow (A : matrix n n α) (k : ℕ) : adjugate (A ^ k) = (adjugate A) ^ k := begin induction k with k IH, { simp }, { rw [pow_succ', mul_eq_mul, adjugate_mul_distrib, IH, ←mul_eq_mul, pow_succ] } end lemma det_smul_adjugate_adjugate (A : matrix n n α) : det A • adjugate (adjugate A) = det A ^ (fintype.card n - 1) • A := begin have : A ⬝ (A.adjugate ⬝ A.adjugate.adjugate) = A ⬝ (A.det ^ (fintype.card n - 1) • 1), { rw [←adjugate_mul_distrib, adjugate_mul, adjugate_smul, adjugate_one], }, rwa [←matrix.mul_assoc, mul_adjugate, matrix.mul_smul, matrix.mul_one, matrix.smul_mul, matrix.one_mul] at this, end /-- Note that this is not true for `fintype.card n = 1` since `1 - 2 = 0` and not `-1`. -/ lemma adjugate_adjugate (A : matrix n n α) (h : fintype.card n ≠ 1) : adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A := begin -- get rid of the `- 2` cases h_card : (fintype.card n) with n', { haveI : is_empty n := fintype.card_eq_zero_iff.mp h_card, exact @subsingleton.elim _ (matrix.subsingleton_of_empty_left) _ _, }, cases n', { exact (h h_card).elim }, rw ←h_card, -- express `A` as an evaluation of a polynomial in n^2 variables, and solve in the polynomial ring -- where `A'.det` is non-zero. let A' := mv_polynomial_X n n ℤ, suffices : adjugate (adjugate A') = det A' ^ (fintype.card n - 2) • A', { rw [←mv_polynomial_X_map_matrix_aeval ℤ A, ←alg_hom.map_adjugate, ←alg_hom.map_adjugate, this, ←alg_hom.map_det, ← alg_hom.map_pow, alg_hom.map_matrix_apply, alg_hom.map_matrix_apply, matrix.map_smul' _ _ _ (_root_.map_mul _)] }, have h_card' : fintype.card n - 2 + 1 = fintype.card n - 1, { simp [h_card] }, have is_reg : is_smul_regular (mv_polynomial (n × n) ℤ) (det A') := λ x y, mul_left_cancel₀ (det_mv_polynomial_X_ne_zero n ℤ), apply is_reg.matrix, rw [smul_smul, ←pow_succ, h_card', det_smul_adjugate_adjugate], end /-- A weaker version of `matrix.adjugate_adjugate` that uses `nontrivial`. -/ lemma adjugate_adjugate' (A : matrix n n α) [nontrivial n] : adjugate (adjugate A) = det A ^ (fintype.card n - 2) • A := adjugate_adjugate _ $ fintype.one_lt_card.ne' end adjugate end matrix