Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl | |
-/ | |
import algebra.direct_sum.finsupp | |
import linear_algebra.finsupp | |
import linear_algebra.direct_sum.tensor_product | |
import data.finsupp.to_dfinsupp | |
/-! | |
# Results on finitely supported functions. | |
The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N). | |
-/ | |
universes u v w | |
noncomputable theory | |
open_locale direct_sum | |
open set linear_map submodule | |
variables {R : Type u} {M : Type v} {N : Type w} [ring R] [add_comm_group M] [module R M] | |
[add_comm_group N] [module R N] | |
section tensor_product | |
open tensor_product | |
open_locale tensor_product classical | |
/-- The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N). -/ | |
def finsupp_tensor_finsupp (R M N ι κ : Sort*) [comm_ring R] | |
[add_comm_group M] [module R M] [add_comm_group N] [module R N] : | |
(ι →₀ M) ⊗[R] (κ →₀ N) ≃ₗ[R] (ι × κ) →₀ (M ⊗[R] N) := | |
(tensor_product.congr (finsupp_lequiv_direct_sum R M ι) (finsupp_lequiv_direct_sum R N κ)) | |
≪≫ₗ ((tensor_product.direct_sum R ι κ (λ _, M) (λ _, N)) | |
≪≫ₗ (finsupp_lequiv_direct_sum R (M ⊗[R] N) (ι × κ)).symm) | |
@[simp] theorem finsupp_tensor_finsupp_single (R M N ι κ : Sort*) [comm_ring R] | |
[add_comm_group M] [module R M] [add_comm_group N] [module R N] | |
(i : ι) (m : M) (k : κ) (n : N) : | |
finsupp_tensor_finsupp R M N ι κ (finsupp.single i m ⊗ₜ finsupp.single k n) = | |
finsupp.single (i, k) (m ⊗ₜ n) := | |
by simp [finsupp_tensor_finsupp] | |
@[simp] theorem finsupp_tensor_finsupp_apply (R M N ι κ : Sort*) [comm_ring R] | |
[add_comm_group M] [module R M] [add_comm_group N] [module R N] | |
(f : ι →₀ M) (g : κ →₀ N) (i : ι) (k : κ) : | |
finsupp_tensor_finsupp R M N ι κ (f ⊗ₜ g) (i, k) = f i ⊗ₜ g k := | |
begin | |
apply finsupp.induction_linear f, | |
{ simp, }, | |
{ intros f₁ f₂ hf₁ hf₂, simp [add_tmul, hf₁, hf₂], }, | |
{ intros i' m, | |
apply finsupp.induction_linear g, | |
{ simp, }, | |
{ intros g₁ g₂ hg₁ hg₂, simp [tmul_add, hg₁, hg₂], }, | |
{ intros k' n, | |
simp only [finsupp_tensor_finsupp_single], | |
simp only [finsupp.single, finsupp.coe_mk], | |
-- split_ifs; finish can close the goal from here | |
by_cases h1 : (i', k') = (i, k), | |
{ simp only [prod.mk.inj_iff] at h1, simp [h1] }, | |
{ simp only [h1, if_false], | |
simp only [prod.mk.inj_iff, not_and_distrib] at h1, | |
cases h1; simp [h1] } } } | |
end | |
@[simp] theorem finsupp_tensor_finsupp_symm_single (R M N ι κ : Sort*) [comm_ring R] | |
[add_comm_group M] [module R M] [add_comm_group N] [module R N] | |
(i : ι × κ) (m : M) (n : N) : | |
(finsupp_tensor_finsupp R M N ι κ).symm (finsupp.single i (m ⊗ₜ n)) = | |
(finsupp.single i.1 m ⊗ₜ finsupp.single i.2 n) := | |
prod.cases_on i $ λ i k, (linear_equiv.symm_apply_eq _).2 | |
(finsupp_tensor_finsupp_single _ _ _ _ _ _ _ _ _).symm | |
variables (S : Type*) [comm_ring S] (α β : Type*) | |
/-- | |
A variant of `finsupp_tensor_finsupp` where both modules are the ground ring. | |
-/ | |
def finsupp_tensor_finsupp' : ((α →₀ S) ⊗[S] (β →₀ S)) ≃ₗ[S] (α × β →₀ S) := | |
(finsupp_tensor_finsupp S S S α β).trans (finsupp.lcongr (equiv.refl _) (tensor_product.lid S S)) | |
@[simp] lemma finsupp_tensor_finsupp'_apply_apply (f : α →₀ S) (g : β →₀ S) (a : α) (b : β) : | |
finsupp_tensor_finsupp' S α β (f ⊗ₜ[S] g) (a, b) = f a * g b := | |
by simp [finsupp_tensor_finsupp'] | |
@[simp] lemma finsupp_tensor_finsupp'_single_tmul_single (a : α) (b : β) (r₁ r₂ : S) : | |
finsupp_tensor_finsupp' S α β (finsupp.single a r₁ ⊗ₜ[S] finsupp.single b r₂) = | |
finsupp.single (a, b) (r₁ * r₂) := | |
by { ext ⟨a', b'⟩, simp [finsupp.single, ite_and] } | |
end tensor_product | |