/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import algebra.direct_sum.finsupp import linear_algebra.finsupp import linear_algebra.direct_sum.tensor_product import data.finsupp.to_dfinsupp /-! # Results on finitely supported functions. The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N). -/ universes u v w noncomputable theory open_locale direct_sum open set linear_map submodule variables {R : Type u} {M : Type v} {N : Type w} [ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] section tensor_product open tensor_product open_locale tensor_product classical /-- The tensor product of ι →₀ M and κ →₀ N is linearly equivalent to (ι × κ) →₀ (M ⊗ N). -/ def finsupp_tensor_finsupp (R M N ι κ : Sort*) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] : (ι →₀ M) ⊗[R] (κ →₀ N) ≃ₗ[R] (ι × κ) →₀ (M ⊗[R] N) := (tensor_product.congr (finsupp_lequiv_direct_sum R M ι) (finsupp_lequiv_direct_sum R N κ)) ≪≫ₗ ((tensor_product.direct_sum R ι κ (λ _, M) (λ _, N)) ≪≫ₗ (finsupp_lequiv_direct_sum R (M ⊗[R] N) (ι × κ)).symm) @[simp] theorem finsupp_tensor_finsupp_single (R M N ι κ : Sort*) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (i : ι) (m : M) (k : κ) (n : N) : finsupp_tensor_finsupp R M N ι κ (finsupp.single i m ⊗ₜ finsupp.single k n) = finsupp.single (i, k) (m ⊗ₜ n) := by simp [finsupp_tensor_finsupp] @[simp] theorem finsupp_tensor_finsupp_apply (R M N ι κ : Sort*) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (f : ι →₀ M) (g : κ →₀ N) (i : ι) (k : κ) : finsupp_tensor_finsupp R M N ι κ (f ⊗ₜ g) (i, k) = f i ⊗ₜ g k := begin apply finsupp.induction_linear f, { simp, }, { intros f₁ f₂ hf₁ hf₂, simp [add_tmul, hf₁, hf₂], }, { intros i' m, apply finsupp.induction_linear g, { simp, }, { intros g₁ g₂ hg₁ hg₂, simp [tmul_add, hg₁, hg₂], }, { intros k' n, simp only [finsupp_tensor_finsupp_single], simp only [finsupp.single, finsupp.coe_mk], -- split_ifs; finish can close the goal from here by_cases h1 : (i', k') = (i, k), { simp only [prod.mk.inj_iff] at h1, simp [h1] }, { simp only [h1, if_false], simp only [prod.mk.inj_iff, not_and_distrib] at h1, cases h1; simp [h1] } } } end @[simp] theorem finsupp_tensor_finsupp_symm_single (R M N ι κ : Sort*) [comm_ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] (i : ι × κ) (m : M) (n : N) : (finsupp_tensor_finsupp R M N ι κ).symm (finsupp.single i (m ⊗ₜ n)) = (finsupp.single i.1 m ⊗ₜ finsupp.single i.2 n) := prod.cases_on i $ λ i k, (linear_equiv.symm_apply_eq _).2 (finsupp_tensor_finsupp_single _ _ _ _ _ _ _ _ _).symm variables (S : Type*) [comm_ring S] (α β : Type*) /-- A variant of `finsupp_tensor_finsupp` where both modules are the ground ring. -/ def finsupp_tensor_finsupp' : ((α →₀ S) ⊗[S] (β →₀ S)) ≃ₗ[S] (α × β →₀ S) := (finsupp_tensor_finsupp S S S α β).trans (finsupp.lcongr (equiv.refl _) (tensor_product.lid S S)) @[simp] lemma finsupp_tensor_finsupp'_apply_apply (f : α →₀ S) (g : β →₀ S) (a : α) (b : β) : finsupp_tensor_finsupp' S α β (f ⊗ₜ[S] g) (a, b) = f a * g b := by simp [finsupp_tensor_finsupp'] @[simp] lemma finsupp_tensor_finsupp'_single_tmul_single (a : α) (b : β) (r₁ r₂ : S) : finsupp_tensor_finsupp' S α β (finsupp.single a r₁ ⊗ₜ[S] finsupp.single b r₂) = finsupp.single (a, b) (r₁ * r₂) := by { ext ⟨a', b'⟩, simp [finsupp.single, ite_and] } end tensor_product