Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau | |
-/ | |
import algebra.geom_sum | |
import linear_algebra.smodeq | |
import ring_theory.ideal.quotient | |
import ring_theory.jacobson_ideal | |
/-! | |
# Completion of a module with respect to an ideal. | |
In this file we define the notions of Hausdorff, precomplete, and complete for an `R`-module `M` | |
with respect to an ideal `I`: | |
## Main definitions | |
- `is_Hausdorff I M`: this says that the intersection of `I^n M` is `0`. | |
- `is_precomplete I M`: this says that every Cauchy sequence converges. | |
- `is_adic_complete I M`: this says that `M` is Hausdorff and precomplete. | |
- `Hausdorffification I M`: this is the universal Hausdorff module with a map from `M`. | |
- `completion I M`: if `I` is finitely generated, then this is the universal complete module (TODO) | |
with a map from `M`. This map is injective iff `M` is Hausdorff and surjective iff `M` is | |
precomplete. | |
-/ | |
open submodule | |
variables {R : Type*} [comm_ring R] (I : ideal R) | |
variables (M : Type*) [add_comm_group M] [module R M] | |
variables {N : Type*} [add_comm_group N] [module R N] | |
/-- A module `M` is Hausdorff with respect to an ideal `I` if `⋂ I^n M = 0`. -/ | |
class is_Hausdorff : Prop := | |
(haus' : ∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0) | |
/-- A module `M` is precomplete with respect to an ideal `I` if every Cauchy sequence converges. -/ | |
class is_precomplete : Prop := | |
(prec' : ∀ f : ℕ → M, | |
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → | |
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)]) | |
/-- A module `M` is `I`-adically complete if it is Hausdorff and precomplete. -/ | |
class is_adic_complete extends is_Hausdorff I M, is_precomplete I M : Prop | |
variables {I M} | |
theorem is_Hausdorff.haus (h : is_Hausdorff I M) : | |
∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 := is_Hausdorff.haus' | |
theorem is_Hausdorff_iff : is_Hausdorff I M ↔ | |
∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 := | |
⟨is_Hausdorff.haus, λ h, ⟨h⟩⟩ | |
theorem is_precomplete.prec (h : is_precomplete I M) {f : ℕ → M} : | |
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → | |
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] := is_precomplete.prec' _ | |
theorem is_precomplete_iff : is_precomplete I M ↔ ∀ f : ℕ → M, | |
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → | |
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] := | |
⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
variables (I M) | |
/-- The Hausdorffification of a module with respect to an ideal. -/ | |
@[reducible] def Hausdorffification : Type* := | |
M ⧸ (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) | |
/-- The completion of a module with respect to an ideal. This is not necessarily Hausdorff. | |
In fact, this is only complete if the ideal is finitely generated. -/ | |
def adic_completion : submodule R (Π n : ℕ, (M ⧸ (I ^ n • ⊤ : submodule R M))) := | |
{ carrier := { f | ∀ {m n} (h : m ≤ n), liftq _ (mkq _) | |
(by { rw ker_mkq, exact smul_mono (ideal.pow_le_pow h) le_rfl }) (f n) = f m }, | |
zero_mem' := λ m n hmn, by rw [pi.zero_apply, pi.zero_apply, linear_map.map_zero], | |
add_mem' := λ f g hf hg m n hmn, by rw [pi.add_apply, pi.add_apply, | |
linear_map.map_add, hf hmn, hg hmn], | |
smul_mem' := λ c f hf m n hmn, by rw [pi.smul_apply, pi.smul_apply, linear_map.map_smul, hf hmn] } | |
namespace is_Hausdorff | |
instance bot : is_Hausdorff (⊥ : ideal R) M := | |
⟨λ x hx, by simpa only [pow_one ⊥, bot_smul, smodeq.bot] using hx 1⟩ | |
variables {M} | |
protected theorem subsingleton (h : is_Hausdorff (⊤ : ideal R) M) : subsingleton M := | |
⟨λ x y, eq_of_sub_eq_zero $ h.haus (x - y) $ λ n, | |
by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩ | |
variables (M) | |
@[priority 100] instance of_subsingleton [subsingleton M] : is_Hausdorff I M := | |
⟨λ x _, subsingleton.elim _ _⟩ | |
variables {I M} | |
theorem infi_pow_smul (h : is_Hausdorff I M) : | |
(⨅ n : ℕ, I ^ n • ⊤ : submodule R M) = ⊥ := | |
eq_bot_iff.2 $ λ x hx, (mem_bot _).2 $ h.haus x $ λ n, smodeq.zero.2 $ | |
(mem_infi $ λ n : ℕ, I ^ n • ⊤).1 hx n | |
end is_Hausdorff | |
namespace Hausdorffification | |
/-- The canonical linear map to the Hausdorffification. -/ | |
def of : M →ₗ[R] Hausdorffification I M := mkq _ | |
variables {I M} | |
@[elab_as_eliminator] | |
lemma induction_on {C : Hausdorffification I M → Prop} (x : Hausdorffification I M) | |
(ih : ∀ x, C (of I M x)) : C x := | |
quotient.induction_on' x ih | |
variables (I M) | |
instance : is_Hausdorff I (Hausdorffification I M) := | |
⟨λ x, quotient.induction_on' x $ λ x hx, (quotient.mk_eq_zero _).2 $ (mem_infi _).2 $ λ n, begin | |
have := comap_map_mkq (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) (I ^ n • ⊤), | |
simp only [sup_of_le_right (infi_le (λ n, (I ^ n • ⊤ : submodule R M)) n)] at this, | |
rw [← this, map_smul'', mem_comap, map_top, range_mkq, ← smodeq.zero], exact hx n | |
end⟩ | |
variables {M} [h : is_Hausdorff I N] | |
include h | |
/-- universal property of Hausdorffification: any linear map to a Hausdorff module extends to a | |
unique map from the Hausdorffification. -/ | |
def lift (f : M →ₗ[R] N) : Hausdorffification I M →ₗ[R] N := | |
liftq _ f $ map_le_iff_le_comap.1 $ h.infi_pow_smul ▸ le_infi (λ n, | |
le_trans (map_mono $ infi_le _ n) $ by { rw map_smul'', exact smul_mono le_rfl le_top }) | |
theorem lift_of (f : M →ₗ[R] N) (x : M) : lift I f (of I M x) = f x := rfl | |
theorem lift_comp_of (f : M →ₗ[R] N) : (lift I f).comp (of I M) = f := | |
linear_map.ext $ λ _, rfl | |
/-- Uniqueness of lift. -/ | |
theorem lift_eq (f : M →ₗ[R] N) (g : Hausdorffification I M →ₗ[R] N) (hg : g.comp (of I M) = f) : | |
g = lift I f := | |
linear_map.ext $ λ x, induction_on x $ λ x, by rw [lift_of, ← hg, linear_map.comp_apply] | |
end Hausdorffification | |
namespace is_precomplete | |
instance bot : is_precomplete (⊥ : ideal R) M := | |
begin | |
refine ⟨λ f hf, ⟨f 1, λ n, _⟩⟩, cases n, | |
{ rw [pow_zero, ideal.one_eq_top, top_smul], exact smodeq.top }, | |
specialize hf (nat.le_add_left 1 n), | |
rw [pow_one, bot_smul, smodeq.bot] at hf, rw hf | |
end | |
instance top : is_precomplete (⊤ : ideal R) M := | |
⟨λ f hf, ⟨0, λ n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩⟩ | |
@[priority 100] instance of_subsingleton [subsingleton M] : is_precomplete I M := | |
⟨λ f hf, ⟨0, λ n, by rw subsingleton.elim (f n) 0⟩⟩ | |
end is_precomplete | |
namespace adic_completion | |
/-- The canonical linear map to the completion. -/ | |
def of : M →ₗ[R] adic_completion I M := | |
{ to_fun := λ x, ⟨λ n, mkq _ x, λ m n hmn, rfl⟩, | |
map_add' := λ x y, rfl, | |
map_smul' := λ c x, rfl } | |
@[simp] lemma of_apply (x : M) (n : ℕ) : (of I M x).1 n = mkq _ x := rfl | |
/-- Linearly evaluating a sequence in the completion at a given input. -/ | |
def eval (n : ℕ) : adic_completion I M →ₗ[R] (M ⧸ (I ^ n • ⊤ : submodule R M)) := | |
{ to_fun := λ f, f.1 n, | |
map_add' := λ f g, rfl, | |
map_smul' := λ c f, rfl } | |
@[simp] lemma coe_eval (n : ℕ) : | |
(eval I M n : adic_completion I M → (M ⧸ (I ^ n • ⊤ : submodule R M))) = λ f, f.1 n := rfl | |
lemma eval_apply (n : ℕ) (f : adic_completion I M) : eval I M n f = f.1 n := rfl | |
lemma eval_of (n : ℕ) (x : M) : eval I M n (of I M x) = mkq _ x := rfl | |
@[simp] lemma eval_comp_of (n : ℕ) : (eval I M n).comp (of I M) = mkq _ := rfl | |
@[simp] lemma range_eval (n : ℕ) : (eval I M n).range = ⊤ := | |
linear_map.range_eq_top.2 $ λ x, quotient.induction_on' x $ λ x, ⟨of I M x, rfl⟩ | |
variables {I M} | |
@[ext] lemma ext {x y : adic_completion I M} (h : ∀ n, eval I M n x = eval I M n y) : x = y := | |
subtype.eq $ funext h | |
variables (I M) | |
instance : is_Hausdorff I (adic_completion I M) := | |
⟨λ x hx, ext $ λ n, smul_induction_on (smodeq.zero.1 $ hx n) | |
(λ r hr x _, ((eval I M n).map_smul r x).symm ▸ quotient.induction_on' (eval I M n x) | |
(λ x, smodeq.zero.2 $ smul_mem_smul hr mem_top)) | |
(λ _ _ ih1 ih2, by rw [linear_map.map_add, ih1, ih2, linear_map.map_zero, add_zero])⟩ | |
end adic_completion | |
namespace is_adic_complete | |
instance bot : is_adic_complete (⊥ : ideal R) M := {} | |
protected theorem subsingleton (h : is_adic_complete (⊤ : ideal R) M) : subsingleton M := | |
h.1.subsingleton | |
@[priority 100] instance of_subsingleton [subsingleton M] : is_adic_complete I M := {} | |
open_locale big_operators | |
open finset | |
lemma le_jacobson_bot [is_adic_complete I R] : I ≤ (⊥ : ideal R).jacobson := | |
begin | |
intros x hx, | |
rw [← ideal.neg_mem_iff, ideal.mem_jacobson_bot], | |
intros y, | |
rw add_comm, | |
let f : ℕ → R := λ n, ∑ i in range n, (x * y) ^ i, | |
have hf : ∀ m n, m ≤ n → f m ≡ f n [SMOD I ^ m • (⊤ : submodule R R)], | |
{ intros m n h, | |
simp only [f, algebra.id.smul_eq_mul, ideal.mul_top, smodeq.sub_mem], | |
rw [← add_tsub_cancel_of_le h, finset.sum_range_add, ← sub_sub, sub_self, zero_sub, | |
neg_mem_iff], | |
apply submodule.sum_mem, | |
intros n hn, | |
rw [mul_pow, pow_add, mul_assoc], | |
exact ideal.mul_mem_right _ (I ^ m) (ideal.pow_mem_pow hx m) }, | |
obtain ⟨L, hL⟩ := is_precomplete.prec to_is_precomplete hf, | |
{ rw is_unit_iff_exists_inv, | |
use L, | |
rw [← sub_eq_zero, neg_mul], | |
apply is_Hausdorff.haus (to_is_Hausdorff : is_Hausdorff I R), | |
intros n, | |
specialize hL n, | |
rw [smodeq.sub_mem, algebra.id.smul_eq_mul, ideal.mul_top] at ⊢ hL, | |
rw sub_zero, | |
suffices : (1 - x * y) * (f n) - 1 ∈ I ^ n, | |
{ convert (ideal.sub_mem _ this (ideal.mul_mem_left _ (1 + - (x * y)) hL)) using 1, | |
ring }, | |
cases n, | |
{ simp only [ideal.one_eq_top, pow_zero] }, | |
{ dsimp [f], | |
rw [← neg_sub _ (1:R), neg_mul, mul_geom_sum, neg_sub, | |
sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, neg_mem_iff, mul_pow], | |
exact ideal.mul_mem_right _ (I ^ _) (ideal.pow_mem_pow hx _), } }, | |
end | |
end is_adic_complete | |