Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10 kB
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.geom_sum
import linear_algebra.smodeq
import ring_theory.ideal.quotient
import ring_theory.jacobson_ideal
/-!
# Completion of a module with respect to an ideal.
In this file we define the notions of Hausdorff, precomplete, and complete for an `R`-module `M`
with respect to an ideal `I`:
## Main definitions
- `is_Hausdorff I M`: this says that the intersection of `I^n M` is `0`.
- `is_precomplete I M`: this says that every Cauchy sequence converges.
- `is_adic_complete I M`: this says that `M` is Hausdorff and precomplete.
- `Hausdorffification I M`: this is the universal Hausdorff module with a map from `M`.
- `completion I M`: if `I` is finitely generated, then this is the universal complete module (TODO)
with a map from `M`. This map is injective iff `M` is Hausdorff and surjective iff `M` is
precomplete.
-/
open submodule
variables {R : Type*} [comm_ring R] (I : ideal R)
variables (M : Type*) [add_comm_group M] [module R M]
variables {N : Type*} [add_comm_group N] [module R N]
/-- A module `M` is Hausdorff with respect to an ideal `I` if `⋂ I^n M = 0`. -/
class is_Hausdorff : Prop :=
(haus' : ∀ x : M, (∀ n : ℕ, x0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0)
/-- A module `M` is precomplete with respect to an ideal `I` if every Cauchy sequence converges. -/
class is_precomplete : Prop :=
(prec' : ∀ f : ℕ → M,
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) →
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)])
/-- A module `M` is `I`-adically complete if it is Hausdorff and precomplete. -/
class is_adic_complete extends is_Hausdorff I M, is_precomplete I M : Prop
variables {I M}
theorem is_Hausdorff.haus (h : is_Hausdorff I M) :
x : M, (∀ n : ℕ, x0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 := is_Hausdorff.haus'
theorem is_Hausdorff_iff : is_Hausdorff I M ↔
∀ x : M, (∀ n : ℕ, x0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 :=
⟨is_Hausdorff.haus, λ h, ⟨h⟩⟩
theorem is_precomplete.prec (h : is_precomplete I M) {f : ℕ → M} :
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) →
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] := is_precomplete.prec' _
theorem is_precomplete_iff : is_precomplete I M ↔ ∀ f : ℕ → M,
(∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) →
∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] :=
⟨λ h, h.1, λ h, ⟨h⟩⟩
variables (I M)
/-- The Hausdorffification of a module with respect to an ideal. -/
@[reducible] def Hausdorffification : Type* :=
M ⧸ (⨅ n : ℕ, I ^ n • ⊤ : submodule R M)
/-- The completion of a module with respect to an ideal. This is not necessarily Hausdorff.
In fact, this is only complete if the ideal is finitely generated. -/
def adic_completion : submodule R (Π n : ℕ, (M ⧸ (I ^ n • ⊤ : submodule R M))) :=
{ carrier := { f | ∀ {m n} (h : m ≤ n), liftq _ (mkq _)
(by { rw ker_mkq, exact smul_mono (ideal.pow_le_pow h) le_rfl }) (f n) = f m },
zero_mem' := λ m n hmn, by rw [pi.zero_apply, pi.zero_apply, linear_map.map_zero],
add_mem' := λ f g hf hg m n hmn, by rw [pi.add_apply, pi.add_apply,
linear_map.map_add, hf hmn, hg hmn],
smul_mem' := λ c f hf m n hmn, by rw [pi.smul_apply, pi.smul_apply, linear_map.map_smul, hf hmn] }
namespace is_Hausdorff
instance bot : is_Hausdorff (⊥ : ideal R) M :=
⟨λ x hx, by simpa only [pow_one ⊥, bot_smul, smodeq.bot] using hx 1
variables {M}
protected theorem subsingleton (h : is_Hausdorff (⊤ : ideal R) M) : subsingleton M :=
⟨λ x y, eq_of_sub_eq_zero $ h.haus (x - y) $ λ n,
by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩
variables (M)
@[priority 100] instance of_subsingleton [subsingleton M] : is_Hausdorff I M :=
⟨λ x _, subsingleton.elim _ _⟩
variables {I M}
theorem infi_pow_smul (h : is_Hausdorff I M) :
(⨅ n : ℕ, I ^ n • ⊤ : submodule R M) = ⊥ :=
eq_bot_iff.2 $ λ x hx, (mem_bot _).2 $ h.haus x $ λ n, smodeq.zero.2 $
(mem_infi $ λ n : ℕ, I ^ n • ⊤).1 hx n
end is_Hausdorff
namespace Hausdorffification
/-- The canonical linear map to the Hausdorffification. -/
def of : M →ₗ[R] Hausdorffification I M := mkq _
variables {I M}
@[elab_as_eliminator]
lemma induction_on {C : Hausdorffification I M → Prop} (x : Hausdorffification I M)
(ih : ∀ x, C (of I M x)) : C x :=
quotient.induction_on' x ih
variables (I M)
instance : is_Hausdorff I (Hausdorffification I M) :=
⟨λ x, quotient.induction_on' x $ λ x hx, (quotient.mk_eq_zero _).2 $ (mem_infi _).2 $ λ n, begin
have := comap_map_mkq (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) (I ^ n • ⊤),
simp only [sup_of_le_right (infi_le (λ n, (I ^ n • ⊤ : submodule R M)) n)] at this,
rw [← this, map_smul'', mem_comap, map_top, range_mkq, ← smodeq.zero], exact hx n
end
variables {M} [h : is_Hausdorff I N]
include h
/-- universal property of Hausdorffification: any linear map to a Hausdorff module extends to a
unique map from the Hausdorffification. -/
def lift (f : M →ₗ[R] N) : Hausdorffification I M →ₗ[R] N :=
liftq _ f $ map_le_iff_le_comap.1 $ h.infi_pow_smul ▸ le_infi (λ n,
le_trans (map_mono $ infi_le _ n) $ by { rw map_smul'', exact smul_mono le_rfl le_top })
theorem lift_of (f : M →ₗ[R] N) (x : M) : lift I f (of I M x) = f x := rfl
theorem lift_comp_of (f : M →ₗ[R] N) : (lift I f).comp (of I M) = f :=
linear_map.ext $ λ _, rfl
/-- Uniqueness of lift. -/
theorem lift_eq (f : M →ₗ[R] N) (g : Hausdorffification I M →ₗ[R] N) (hg : g.comp (of I M) = f) :
g = lift I f :=
linear_map.ext $ λ x, induction_on x $ λ x, by rw [lift_of, ← hg, linear_map.comp_apply]
end Hausdorffification
namespace is_precomplete
instance bot : is_precomplete (⊥ : ideal R) M :=
begin
refine ⟨λ f hf, ⟨f 1, λ n, _⟩⟩, cases n,
{ rw [pow_zero, ideal.one_eq_top, top_smul], exact smodeq.top },
specialize hf (nat.le_add_left 1 n),
rw [pow_one, bot_smul, smodeq.bot] at hf, rw hf
end
instance top : is_precomplete (⊤ : ideal R) M :=
⟨λ f hf, ⟨0, λ n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩⟩
@[priority 100] instance of_subsingleton [subsingleton M] : is_precomplete I M :=
⟨λ f hf, ⟨0, λ n, by rw subsingleton.elim (f n) 0⟩⟩
end is_precomplete
namespace adic_completion
/-- The canonical linear map to the completion. -/
def of : M →ₗ[R] adic_completion I M :=
{ to_fun := λ x, ⟨λ n, mkq _ x, λ m n hmn, rfl⟩,
map_add' := λ x y, rfl,
map_smul' := λ c x, rfl }
@[simp] lemma of_apply (x : M) (n : ℕ) : (of I M x).1 n = mkq _ x := rfl
/-- Linearly evaluating a sequence in the completion at a given input. -/
def eval (n : ℕ) : adic_completion I M →ₗ[R] (M ⧸ (I ^ n • ⊤ : submodule R M)) :=
{ to_fun := λ f, f.1 n,
map_add' := λ f g, rfl,
map_smul' := λ c f, rfl }
@[simp] lemma coe_eval (n : ℕ) :
(eval I M n : adic_completion I M → (M ⧸ (I ^ n • ⊤ : submodule R M))) = λ f, f.1 n := rfl
lemma eval_apply (n : ℕ) (f : adic_completion I M) : eval I M n f = f.1 n := rfl
lemma eval_of (n : ℕ) (x : M) : eval I M n (of I M x) = mkq _ x := rfl
@[simp] lemma eval_comp_of (n : ℕ) : (eval I M n).comp (of I M) = mkq _ := rfl
@[simp] lemma range_eval (n : ℕ) : (eval I M n).range = ⊤ :=
linear_map.range_eq_top.2 $ λ x, quotient.induction_on' x $ λ x, ⟨of I M x, rfl⟩
variables {I M}
@[ext] lemma ext {x y : adic_completion I M} (h : ∀ n, eval I M n x = eval I M n y) : x = y :=
subtype.eq $ funext h
variables (I M)
instance : is_Hausdorff I (adic_completion I M) :=
⟨λ x hx, ext $ λ n, smul_induction_on (smodeq.zero.1 $ hx n)
(λ r hr x _, ((eval I M n).map_smul r x).symm ▸ quotient.induction_on' (eval I M n x)
(λ x, smodeq.zero.2 $ smul_mem_smul hr mem_top))
(λ _ _ ih1 ih2, by rw [linear_map.map_add, ih1, ih2, linear_map.map_zero, add_zero])⟩
end adic_completion
namespace is_adic_complete
instance bot : is_adic_complete (⊥ : ideal R) M := {}
protected theorem subsingleton (h : is_adic_complete (⊤ : ideal R) M) : subsingleton M :=
h.1.subsingleton
@[priority 100] instance of_subsingleton [subsingleton M] : is_adic_complete I M := {}
open_locale big_operators
open finset
lemma le_jacobson_bot [is_adic_complete I R] : I ≤ (⊥ : ideal R).jacobson :=
begin
intros x hx,
rw [← ideal.neg_mem_iff, ideal.mem_jacobson_bot],
intros y,
rw add_comm,
let f : ℕ → R := λ n, ∑ i in range n, (x * y) ^ i,
have hf : ∀ m n, m ≤ n → f m ≡ f n [SMOD I ^ m • (⊤ : submodule R R)],
{ intros m n h,
simp only [f, algebra.id.smul_eq_mul, ideal.mul_top, smodeq.sub_mem],
rw [← add_tsub_cancel_of_le h, finset.sum_range_add, ← sub_sub, sub_self, zero_sub,
neg_mem_iff],
apply submodule.sum_mem,
intros n hn,
rw [mul_pow, pow_add, mul_assoc],
exact ideal.mul_mem_right _ (I ^ m) (ideal.pow_mem_pow hx m) },
obtain ⟨L, hL⟩ := is_precomplete.prec to_is_precomplete hf,
{ rw is_unit_iff_exists_inv,
use L,
rw [← sub_eq_zero, neg_mul],
apply is_Hausdorff.haus (to_is_Hausdorff : is_Hausdorff I R),
intros n,
specialize hL n,
rw [smodeq.sub_mem, algebra.id.smul_eq_mul, ideal.mul_top] at ⊢ hL,
rw sub_zero,
suffices : (1 - x * y) * (f n) - 1 ∈ I ^ n,
{ convert (ideal.sub_mem _ this (ideal.mul_mem_left _ (1 + - (x * y)) hL)) using 1,
ring },
cases n,
{ simp only [ideal.one_eq_top, pow_zero] },
{ dsimp [f],
rw [← neg_sub _ (1:R), neg_mul, mul_geom_sum, neg_sub,
sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, neg_mem_iff, mul_pow],
exact ideal.mul_mem_right _ (I ^ _) (ideal.pow_mem_pow hx _), } },
end
end is_adic_complete