Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.97 kB
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser, Jireh Loreaux
-/
import group_theory.subsemigroup.operations
import data.fintype.basic
/-!
# Centers of magmas and semigroups
## Main definitions
* `set.center`: the center of a magma
* `subsemigroup.center`: the center of a semigroup
* `set.add_center`: the center of an additive magma
* `add_subsemigroup.center`: the center of an additive semigroup
We provide `submonoid.center`, `add_submonoid.center`, `subgroup.center`, `add_subgroup.center`,
`subsemiring.center`, and `subring.center` in other files.
-/
variables {M : Type*}
namespace set
variables (M)
/-- The center of a magma. -/
@[to_additive add_center /-" The center of an additive magma. "-/]
def center [has_mul M] : set M := {z | ∀ m, m * z = z * m}
@[to_additive mem_add_center]
lemma mem_center_iff [has_mul M] {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl
instance decidable_mem_center [has_mul M] [decidable_eq M] [fintype M] :
decidable_pred (∈ center M) :=
λ _, decidable_of_iff' _ (mem_center_iff M)
@[simp, to_additive zero_mem_add_center]
lemma one_mem_center [mul_one_class M] : (1 : M) ∈ set.center M := by simp [mem_center_iff]
@[simp]
lemma zero_mem_center [mul_zero_class M] : (0 : M) ∈ set.center M := by simp [mem_center_iff]
variables {M}
@[simp, to_additive add_mem_add_center]
lemma mul_mem_center [semigroup M] {a b : M}
(ha : aset.center M) (hb : bset.center M) : a * b ∈ set.center M :=
λ g, by rw [mul_assoc, ←hb g, ← mul_assoc, ha g, mul_assoc]
@[simp, to_additive neg_mem_add_center]
lemma inv_mem_center [group M] {a : M} (ha : aset.center M) : a⁻¹ ∈ set.center M :=
λ g, by rw [← inv_inj, mul_inv_rev, inv_inv, ← ha, mul_inv_rev, inv_inv]
@[simp]
lemma add_mem_center [distrib M] {a b : M}
(ha : aset.center M) (hb : bset.center M) : a + b ∈ set.center M :=
λ c, by rw [add_mul, mul_add, ha c, hb c]
@[simp]
lemma neg_mem_center [ring M] {a : M} (ha : aset.center M) : -a ∈ set.center M :=
λ c, by rw [←neg_mul_comm, ha (-c), neg_mul_comm]
@[to_additive subset_add_center_add_units]
lemma subset_center_units [monoid M] :
(coe : Mˣ → M) ⁻¹' center M ⊆ set.center Mˣ :=
λ a ha b, units.ext $ ha _
lemma center_units_subset [group_with_zero M] :
set.center Mˣ ⊆ (coe : Mˣ → M) ⁻¹' center M :=
λ a ha b, begin
obtain rfl | hb := eq_or_ne b 0,
{ rw [zero_mul, mul_zero], },
{ exact units.ext_iff.mp (ha (units.mk0 _ hb)) }
end
/-- In a group with zero, the center of the units is the preimage of the center. -/
lemma center_units_eq [group_with_zero M] :
set.center Mˣ = (coe : Mˣ → M) ⁻¹' center M :=
subset.antisymm center_units_subset subset_center_units
@[simp]
lemma inv_mem_center₀ [group_with_zero M] {a : M} (ha : aset.center M) : a⁻¹ ∈ set.center M :=
begin
obtain rfl | ha0 := eq_or_ne a 0,
{ rw inv_zero, exact zero_mem_center M },
rcases is_unit.mk0 _ ha0 with ⟨a, rfl⟩,
rw ←units.coe_inv,
exact center_units_subset (inv_mem_center (subset_center_units ha)),
end
@[simp, to_additive sub_mem_add_center]
lemma div_mem_center [group M] {a b : M} (ha : aset.center M) (hb : bset.center M) :
a / b ∈ set.center M :=
begin
rw [div_eq_mul_inv],
exact mul_mem_center ha (inv_mem_center hb),
end
@[simp]
lemma div_mem_center₀ [group_with_zero M] {a b : M} (ha : aset.center M)
(hb : bset.center M) : a / b ∈ set.center M :=
begin
rw div_eq_mul_inv,
exact mul_mem_center ha (inv_mem_centerhb),
end
variables (M)
@[simp, to_additive add_center_eq_univ]
lemma center_eq_univ [comm_semigroup M] : center M = set.univ :=
subset.antisymm (subset_univ _) $ λ x _ y, mul_comm y x
end set
namespace subsemigroup
section
variables (M) [semigroup M]
/-- The center of a semigroup `M` is the set of elements that commute with everything in `M` -/
@[to_additive "The center of a semigroup `M` is the set of elements that commute with everything in
`M`"]
def center : subsemigroup M :=
{ carrier := set.center M,
mul_mem' := λ a b, set.mul_mem_center }
@[to_additive] lemma coe_center : ↑(center M) = set.center M := rfl
variables {M}
@[to_additive] lemma mem_center_iff {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl
@[to_additive]
instance decidable_mem_center [decidable_eq M] [fintype M] : decidable_pred (∈ center M) :=
λ _, decidable_of_iff' _ mem_center_iff
/-- The center of a semigroup is commutative. -/
@[to_additive "The center of an additive semigroup is commutative."]
instance : comm_semigroup (center M) :=
{ mul_comm := λ a b, subtype.ext $ b.prop _,
.. mul_mem_class.to_semigroup (center M) }
end
section
variables (M) [comm_semigroup M]
@[to_additive, simp] lemma center_eq_top : center M = ⊤ :=
set_like.coe_injective (set.center_eq_univ M)
end
end subsemigroup