Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser, Jireh Loreaux | |
-/ | |
import group_theory.subsemigroup.operations | |
import data.fintype.basic | |
/-! | |
* `set.center`: the center of a magma | |
* `subsemigroup.center`: the center of a semigroup | |
* `set.add_center`: the center of an additive magma | |
* `add_subsemigroup.center`: the center of an additive semigroup | |
We provide `submonoid.center`, `add_submonoid.center`, `subgroup.center`, `add_subgroup.center`, | |
`subsemiring.center`, and `subring.center` in other files. | |
-/ | |
variables {M : Type*} | |
namespace set | |
variables (M) | |
/-- The center of a magma. -/ | |
@[to_additive add_center /-" The center of an additive magma. "-/] | |
def center [has_mul M] : set M := {z | ∀ m, m * z = z * m} | |
@[to_additive mem_add_center] | |
lemma mem_center_iff [has_mul M] {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl | |
instance decidable_mem_center [has_mul M] [decidable_eq M] [fintype M] : | |
decidable_pred (∈ center M) := | |
λ _, decidable_of_iff' _ (mem_center_iff M) | |
@[simp, to_additive zero_mem_add_center] | |
lemma one_mem_center [mul_one_class M] : (1 : M) ∈ set.center M := by simp [mem_center_iff] | |
@[simp] | |
lemma zero_mem_center [mul_zero_class M] : (0 : M) ∈ set.center M := by simp [mem_center_iff] | |
variables {M} | |
@[simp, to_additive add_mem_add_center] | |
lemma mul_mem_center [semigroup M] {a b : M} | |
(ha : a ∈ set.center M) (hb : b ∈ set.center M) : a * b ∈ set.center M := | |
λ g, by rw [mul_assoc, ←hb g, ← mul_assoc, ha g, mul_assoc] | |
@[simp, to_additive neg_mem_add_center] | |
lemma inv_mem_center [group M] {a : M} (ha : a ∈ set.center M) : a⁻¹ ∈ set.center M := | |
λ g, by rw [← inv_inj, mul_inv_rev, inv_inv, ← ha, mul_inv_rev, inv_inv] | |
@[simp] | |
lemma add_mem_center [distrib M] {a b : M} | |
(ha : a ∈ set.center M) (hb : b ∈ set.center M) : a + b ∈ set.center M := | |
λ c, by rw [add_mul, mul_add, ha c, hb c] | |
@[simp] | |
lemma neg_mem_center [ring M] {a : M} (ha : a ∈ set.center M) : -a ∈ set.center M := | |
λ c, by rw [←neg_mul_comm, ha (-c), neg_mul_comm] | |
@[to_additive subset_add_center_add_units] | |
lemma subset_center_units [monoid M] : | |
(coe : Mˣ → M) ⁻¹' center M ⊆ set.center Mˣ := | |
λ a ha b, units.ext $ ha _ | |
lemma center_units_subset [group_with_zero M] : | |
set.center Mˣ ⊆ (coe : Mˣ → M) ⁻¹' center M := | |
λ a ha b, begin | |
obtain rfl | hb := eq_or_ne b 0, | |
{ rw [zero_mul, mul_zero], }, | |
{ exact units.ext_iff.mp (ha (units.mk0 _ hb)) } | |
end | |
/-- In a group with zero, the center of the units is the preimage of the center. -/ | |
lemma center_units_eq [group_with_zero M] : | |
set.center Mˣ = (coe : Mˣ → M) ⁻¹' center M := | |
subset.antisymm center_units_subset subset_center_units | |
@[simp] | |
lemma inv_mem_center₀ [group_with_zero M] {a : M} (ha : a ∈ set.center M) : a⁻¹ ∈ set.center M := | |
begin | |
obtain rfl | ha0 := eq_or_ne a 0, | |
{ rw inv_zero, exact zero_mem_center M }, | |
rcases is_unit.mk0 _ ha0 with ⟨a, rfl⟩, | |
rw ←units.coe_inv, | |
exact center_units_subset (inv_mem_center (subset_center_units ha)), | |
end | |
@[simp, to_additive sub_mem_add_center] | |
lemma div_mem_center [group M] {a b : M} (ha : a ∈ set.center M) (hb : b ∈ set.center M) : | |
a / b ∈ set.center M := | |
begin | |
rw [div_eq_mul_inv], | |
exact mul_mem_center ha (inv_mem_center hb), | |
end | |
@[simp] | |
lemma div_mem_center₀ [group_with_zero M] {a b : M} (ha : a ∈ set.center M) | |
(hb : b ∈ set.center M) : a / b ∈ set.center M := | |
begin | |
rw div_eq_mul_inv, | |
exact mul_mem_center ha (inv_mem_center₀ hb), | |
end | |
variables (M) | |
@[simp, to_additive add_center_eq_univ] | |
lemma center_eq_univ [comm_semigroup M] : center M = set.univ := | |
subset.antisymm (subset_univ _) $ λ x _ y, mul_comm y x | |
end set | |
namespace subsemigroup | |
section | |
variables (M) [semigroup M] | |
/-- The center of a semigroup `M` is the set of elements that commute with everything in `M` -/ | |
@[to_additive "The center of a semigroup `M` is the set of elements that commute with everything in | |
`M`"] | |
def center : subsemigroup M := | |
{ carrier := set.center M, | |
mul_mem' := λ a b, set.mul_mem_center } | |
@[to_additive] lemma coe_center : ↑(center M) = set.center M := rfl | |
variables {M} | |
@[to_additive] lemma mem_center_iff {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl | |
@[to_additive] | |
instance decidable_mem_center [decidable_eq M] [fintype M] : decidable_pred (∈ center M) := | |
λ _, decidable_of_iff' _ mem_center_iff | |
/-- The center of a semigroup is commutative. -/ | |
@[to_additive "The center of an additive semigroup is commutative."] | |
instance : comm_semigroup (center M) := | |
{ mul_comm := λ a b, subtype.ext $ b.prop _, | |
.. mul_mem_class.to_semigroup (center M) } | |
end | |
section | |
variables (M) [comm_semigroup M] | |
@[to_additive, simp] lemma center_eq_top : center M = ⊤ := | |
set_like.coe_injective (set.center_eq_univ M) | |
end | |
end subsemigroup | |