/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser, Jireh Loreaux -/ import group_theory.subsemigroup.operations import data.fintype.basic /-! # Centers of magmas and semigroups ## Main definitions * `set.center`: the center of a magma * `subsemigroup.center`: the center of a semigroup * `set.add_center`: the center of an additive magma * `add_subsemigroup.center`: the center of an additive semigroup We provide `submonoid.center`, `add_submonoid.center`, `subgroup.center`, `add_subgroup.center`, `subsemiring.center`, and `subring.center` in other files. -/ variables {M : Type*} namespace set variables (M) /-- The center of a magma. -/ @[to_additive add_center /-" The center of an additive magma. "-/] def center [has_mul M] : set M := {z | ∀ m, m * z = z * m} @[to_additive mem_add_center] lemma mem_center_iff [has_mul M] {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl instance decidable_mem_center [has_mul M] [decidable_eq M] [fintype M] : decidable_pred (∈ center M) := λ _, decidable_of_iff' _ (mem_center_iff M) @[simp, to_additive zero_mem_add_center] lemma one_mem_center [mul_one_class M] : (1 : M) ∈ set.center M := by simp [mem_center_iff] @[simp] lemma zero_mem_center [mul_zero_class M] : (0 : M) ∈ set.center M := by simp [mem_center_iff] variables {M} @[simp, to_additive add_mem_add_center] lemma mul_mem_center [semigroup M] {a b : M} (ha : a ∈ set.center M) (hb : b ∈ set.center M) : a * b ∈ set.center M := λ g, by rw [mul_assoc, ←hb g, ← mul_assoc, ha g, mul_assoc] @[simp, to_additive neg_mem_add_center] lemma inv_mem_center [group M] {a : M} (ha : a ∈ set.center M) : a⁻¹ ∈ set.center M := λ g, by rw [← inv_inj, mul_inv_rev, inv_inv, ← ha, mul_inv_rev, inv_inv] @[simp] lemma add_mem_center [distrib M] {a b : M} (ha : a ∈ set.center M) (hb : b ∈ set.center M) : a + b ∈ set.center M := λ c, by rw [add_mul, mul_add, ha c, hb c] @[simp] lemma neg_mem_center [ring M] {a : M} (ha : a ∈ set.center M) : -a ∈ set.center M := λ c, by rw [←neg_mul_comm, ha (-c), neg_mul_comm] @[to_additive subset_add_center_add_units] lemma subset_center_units [monoid M] : (coe : Mˣ → M) ⁻¹' center M ⊆ set.center Mˣ := λ a ha b, units.ext $ ha _ lemma center_units_subset [group_with_zero M] : set.center Mˣ ⊆ (coe : Mˣ → M) ⁻¹' center M := λ a ha b, begin obtain rfl | hb := eq_or_ne b 0, { rw [zero_mul, mul_zero], }, { exact units.ext_iff.mp (ha (units.mk0 _ hb)) } end /-- In a group with zero, the center of the units is the preimage of the center. -/ lemma center_units_eq [group_with_zero M] : set.center Mˣ = (coe : Mˣ → M) ⁻¹' center M := subset.antisymm center_units_subset subset_center_units @[simp] lemma inv_mem_center₀ [group_with_zero M] {a : M} (ha : a ∈ set.center M) : a⁻¹ ∈ set.center M := begin obtain rfl | ha0 := eq_or_ne a 0, { rw inv_zero, exact zero_mem_center M }, rcases is_unit.mk0 _ ha0 with ⟨a, rfl⟩, rw ←units.coe_inv, exact center_units_subset (inv_mem_center (subset_center_units ha)), end @[simp, to_additive sub_mem_add_center] lemma div_mem_center [group M] {a b : M} (ha : a ∈ set.center M) (hb : b ∈ set.center M) : a / b ∈ set.center M := begin rw [div_eq_mul_inv], exact mul_mem_center ha (inv_mem_center hb), end @[simp] lemma div_mem_center₀ [group_with_zero M] {a b : M} (ha : a ∈ set.center M) (hb : b ∈ set.center M) : a / b ∈ set.center M := begin rw div_eq_mul_inv, exact mul_mem_center ha (inv_mem_center₀ hb), end variables (M) @[simp, to_additive add_center_eq_univ] lemma center_eq_univ [comm_semigroup M] : center M = set.univ := subset.antisymm (subset_univ _) $ λ x _ y, mul_comm y x end set namespace subsemigroup section variables (M) [semigroup M] /-- The center of a semigroup `M` is the set of elements that commute with everything in `M` -/ @[to_additive "The center of a semigroup `M` is the set of elements that commute with everything in `M`"] def center : subsemigroup M := { carrier := set.center M, mul_mem' := λ a b, set.mul_mem_center } @[to_additive] lemma coe_center : ↑(center M) = set.center M := rfl variables {M} @[to_additive] lemma mem_center_iff {z : M} : z ∈ center M ↔ ∀ g, g * z = z * g := iff.rfl @[to_additive] instance decidable_mem_center [decidable_eq M] [fintype M] : decidable_pred (∈ center M) := λ _, decidable_of_iff' _ mem_center_iff /-- The center of a semigroup is commutative. -/ @[to_additive "The center of an additive semigroup is commutative."] instance : comm_semigroup (center M) := { mul_comm := λ a b, subtype.ext $ b.prop _, .. mul_mem_class.to_semigroup (center M) } end section variables (M) [comm_semigroup M] @[to_additive, simp] lemma center_eq_top : center M = ⊤ := set_like.coe_injective (set.center_eq_univ M) end end subsemigroup