Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Alex J. Best. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Alex J. Best | |
-/ | |
import data.set.pointwise | |
import group_theory.group_action.pi | |
/-! | |
# Pointwise actions on sets in Pi types | |
This file contains lemmas about pointwise actions on sets in Pi types. | |
## Tags | |
set multiplication, set addition, pointwise addition, pointwise multiplication, pi | |
-/ | |
open_locale pointwise | |
open set | |
variables {K ι : Type*} {R : ι → Type*} | |
@[to_additive] | |
lemma smul_pi_subset [∀ i, has_smul K (R i)] (r : K) (s : set ι) (t : Π i, set (R i)) : | |
r • pi s t ⊆ pi s (r • t) := | |
begin | |
rintros x ⟨y, h, rfl⟩ i hi, | |
exact smul_mem_smul_set (h i hi), | |
end | |
@[to_additive] | |
lemma smul_univ_pi [∀ i, has_smul K (R i)] (r : K) (t : Π i, set (R i)) : | |
r • pi (univ : set ι) t = pi (univ : set ι) (r • t) := | |
subset.antisymm (smul_pi_subset _ _ _) $ λ x h, begin | |
refine ⟨λ i, classical.some (h i $ set.mem_univ _), λ i hi, _, funext $ λ i, _⟩, | |
{ exact (classical.some_spec (h i _)).left, }, | |
{ exact (classical.some_spec (h i _)).right, }, | |
end | |
@[to_additive] | |
lemma smul_pi [group K] [∀ i, mul_action K (R i)] (r : K) (S : set ι) (t : Π i, set (R i)) : | |
r • S.pi t = S.pi (r • t) := | |
subset.antisymm (smul_pi_subset _ _ _) $ λ x h, | |
⟨r⁻¹ • x, λ i hiS, mem_smul_set_iff_inv_smul_mem.mp (h i hiS), smul_inv_smul _ _⟩ | |
lemma smul_pi₀ [group_with_zero K] [∀ i, mul_action K (R i)] {r : K} (S : set ι) | |
(t : Π i, set (R i)) (hr : r ≠ 0) : r • S.pi t = S.pi (r • t) := | |
smul_pi (units.mk0 r hr) S t | |