Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.61 kB
/-
Copyright (c) 2021 Alex J. Best. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alex J. Best
-/
import data.set.pointwise
import group_theory.group_action.pi
/-!
# Pointwise actions on sets in Pi types
This file contains lemmas about pointwise actions on sets in Pi types.
## Tags
set multiplication, set addition, pointwise addition, pointwise multiplication, pi
-/
open_locale pointwise
open set
variables {K ι : Type*} {R : ι → Type*}
@[to_additive]
lemma smul_pi_subset [∀ i, has_smul K (R i)] (r : K) (s : set ι) (t : Π i, set (R i)) :
r • pi s t ⊆ pi s (r • t) :=
begin
rintros x ⟨y, h, rfl⟩ i hi,
exact smul_mem_smul_set (h i hi),
end
@[to_additive]
lemma smul_univ_pi [∀ i, has_smul K (R i)] (r : K) (t : Π i, set (R i)) :
r • pi (univ : set ι) t = pi (univ : set ι) (r • t) :=
subset.antisymm (smul_pi_subset _ _ _) $ λ x h, begin
refine ⟨λ i, classical.some (h i $ set.mem_univ _), λ i hi, _, funext $ λ i, _⟩,
{ exact (classical.some_spec (h i _)).left, },
{ exact (classical.some_spec (h i _)).right, },
end
@[to_additive]
lemma smul_pi [group K] [∀ i, mul_action K (R i)] (r : K) (S : set ι) (t : Π i, set (R i)) :
r • S.pi t = S.pi (r • t) :=
subset.antisymm (smul_pi_subset _ _ _) $ λ x h,
r⁻¹ • x, λ i hiS, mem_smul_set_iff_inv_smul_mem.mp (h i hiS), smul_inv_smul _ _⟩
lemma smul_pi₀ [group_with_zero K] [∀ i, mul_action K (R i)] {r : K} (S : set ι)
(t : Π i, set (R i)) (hr : r0) : r • S.pi t = S.pi (r • t) :=
smul_pi (units.mk0 r hr) S t