/- Copyright (c) 2021 Alex J. Best. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alex J. Best -/ import data.set.pointwise import group_theory.group_action.pi /-! # Pointwise actions on sets in Pi types This file contains lemmas about pointwise actions on sets in Pi types. ## Tags set multiplication, set addition, pointwise addition, pointwise multiplication, pi -/ open_locale pointwise open set variables {K ι : Type*} {R : ι → Type*} @[to_additive] lemma smul_pi_subset [∀ i, has_smul K (R i)] (r : K) (s : set ι) (t : Π i, set (R i)) : r • pi s t ⊆ pi s (r • t) := begin rintros x ⟨y, h, rfl⟩ i hi, exact smul_mem_smul_set (h i hi), end @[to_additive] lemma smul_univ_pi [∀ i, has_smul K (R i)] (r : K) (t : Π i, set (R i)) : r • pi (univ : set ι) t = pi (univ : set ι) (r • t) := subset.antisymm (smul_pi_subset _ _ _) $ λ x h, begin refine ⟨λ i, classical.some (h i $ set.mem_univ _), λ i hi, _, funext $ λ i, _⟩, { exact (classical.some_spec (h i _)).left, }, { exact (classical.some_spec (h i _)).right, }, end @[to_additive] lemma smul_pi [group K] [∀ i, mul_action K (R i)] (r : K) (S : set ι) (t : Π i, set (R i)) : r • S.pi t = S.pi (r • t) := subset.antisymm (smul_pi_subset _ _ _) $ λ x h, ⟨r⁻¹ • x, λ i hiS, mem_smul_set_iff_inv_smul_mem.mp (h i hiS), smul_inv_smul _ _⟩ lemma smul_pi₀ [group_with_zero K] [∀ i, mul_action K (R i)] {r : K} (S : set ι) (t : Π i, set (R i)) (hr : r ≠ 0) : r • S.pi t = S.pi (r • t) := smul_pi (units.mk0 r hr) S t