Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Jujian Zhang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jujian Zhang | |
-/ | |
import algebra.category.Module.abelian | |
import category_theory.preadditive.injective | |
import ring_theory.ideal.basic | |
/-! | |
* `module.injective`: an `R`-module `Q` is injective if and only if every injective `R`-linear | |
map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there | |
is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f` | |
``` | |
X --- f ---> Y | |
| | |
| g | |
v | |
Q | |
``` | |
* `module.Baer`: an `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an | |
`ideal R` extends to an `R`-linear map `R ⟶ Q` | |
## Main statements | |
* `module.Baer.criterion`: an `R`-module is injective if it is Baer. | |
-/ | |
noncomputable theory | |
universes u v | |
variables (R : Type u) [ring R] (Q : Type (max u v)) [add_comm_group Q] [module R Q] | |
/--An `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear | |
map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map | |
`h : Y ⟶ Q` such that `g = h ∘ f` | |
``` | |
X --- f ---> Y | |
| | |
| g | |
v | |
Q | |
``` | |
-/ | |
class module.injective : Prop := | |
(out : ∀ (X Y : Type (max u v)) [add_comm_group X] [add_comm_group Y] [module R X] [module R Y] | |
(f : X →ₗ[R] Y) (hf : function.injective f) (g : X →ₗ[R] Q), | |
∃ (h : Y →ₗ[R] Q), ∀ x, h (f x) = g x) | |
lemma module.injective_object_of_injective_module [module.injective.{u v} R Q] : | |
category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) := | |
{ factors := λ X Y g f mn, begin | |
rcases module.injective.out X Y f ((Module.mono_iff_injective f).mp mn) g with ⟨h, eq1⟩, | |
exact ⟨h, linear_map.ext eq1⟩, | |
end } | |
lemma module.injective_module_of_injective_object | |
[category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R)] : | |
module.injective.{u v} R Q := | |
{ out := λ X Y ins1 ins2 ins3 ins4 f hf g, begin | |
resetI, | |
rcases @category_theory.injective.factors (Module R) _ ⟨Q⟩ _ ⟨X⟩ ⟨Y⟩ g f | |
((Module.mono_iff_injective _).mpr hf) with ⟨h, rfl⟩, | |
exact ⟨h, λ x, rfl⟩ | |
end } | |
lemma module.injective_iff_injective_object : | |
module.injective.{u v} R Q ↔ category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) := | |
⟨λ h, @@module.injective_object_of_injective_module R _ Q _ _ h, | |
λ h, @@module.injective_module_of_injective_object R _ Q _ _ h⟩ | |
/--An `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to | |
an `R`-linear map `R ⟶ Q`-/ | |
def module.Baer : Prop := ∀ (I : ideal R) (g : I →ₗ[R] Q), ∃ (g' : R →ₗ[R] Q), | |
∀ (x : R) (mem : x ∈ I), g' x = g ⟨x, mem⟩ | |
namespace module.Baer | |
variables {R Q} {M N : Type (max u v)} [add_comm_group M] [add_comm_group N] | |
variables [module R M] [module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) | |
/-- If we view `M` as a submodule of `N` via the injective linear map `i : M ↪ N`, then a submodule | |
between `M` and `N` is a submodule `N'` of `N`. To prove Baer's criterion, we need to consider | |
pairs of `(N', f')` such that `M ≤ N' ≤ N` and `f'` extends `f`. -/ | |
structure extension_of extends linear_pmap R N Q := | |
(le : i.range ≤ domain) | |
(is_extension : ∀ (m : M), f m = to_linear_pmap ⟨i m, le ⟨m, rfl⟩⟩) | |
section ext | |
variables {i f} | |
@[ext] lemma extension_of.ext {a b : extension_of i f} | |
(domain_eq : a.domain = b.domain) | |
(to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, | |
(x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y) : a = b := | |
begin | |
rcases a with ⟨a, a_le, e1⟩, | |
rcases b with ⟨b, b_le, e2⟩, | |
congr, | |
exact linear_pmap.ext domain_eq to_fun_eq, | |
end | |
lemma extension_of.ext_iff {a b : extension_of i f} : | |
a = b ↔ ∃ (domain_eq : a.domain = b.domain), | |
∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y := | |
⟨λ r, r ▸ ⟨rfl, λ x y h, congr_arg a.to_fun $ by exact_mod_cast h⟩, | |
λ ⟨h1, h2⟩, extension_of.ext h1 h2⟩ | |
end ext | |
instance : has_inf (extension_of i f) := | |
{ inf := λ X1 X2, | |
{ le := λ x hx, (begin | |
rcases hx with ⟨x, rfl⟩, | |
refine ⟨X1.le (set.mem_range_self _), X2.le (set.mem_range_self _), _⟩, | |
rw [← X1.is_extension x, ← X2.is_extension x], | |
end : x ∈ X1.to_linear_pmap.eq_locus X2.to_linear_pmap), | |
is_extension := λ m, X1.is_extension _, | |
.. (X1.to_linear_pmap ⊓ X2.to_linear_pmap)} } | |
instance : semilattice_inf (extension_of i f) := | |
function.injective.semilattice_inf extension_of.to_linear_pmap | |
(λ X Y h, extension_of.ext (by rw h) $ λ x y h', by { induction h, congr, exact_mod_cast h' }) $ | |
λ X Y, linear_pmap.ext rfl $ λ x y h, by { congr, exact_mod_cast h } | |
variables {R i f} | |
lemma chain_linear_pmap_of_chain_extension_of | |
{c : set (extension_of i f)} (hchain : is_chain (≤) c) : | |
(is_chain (≤) $ (λ x : extension_of i f, x.to_linear_pmap) '' c) := | |
begin | |
rintro _ ⟨a, a_mem, rfl⟩ _ ⟨b, b_mem, rfl⟩ neq, | |
exact hchain a_mem b_mem (ne_of_apply_ne _ neq), | |
end | |
/-- The maximal element of every nonempty chain of `extension_of i f`. -/ | |
def extension_of.max {c : set (extension_of i f)} (hchain : is_chain (≤) c) | |
(hnonempty : c.nonempty) : | |
extension_of i f := | |
{ le := le_trans hnonempty.some.le $ (linear_pmap.le_Sup _ $ (set.mem_image _ _ _).mpr | |
⟨hnonempty.some, hnonempty.some_spec, rfl⟩).1, | |
is_extension := λ m, begin | |
refine eq.trans (hnonempty.some.is_extension m) _, | |
symmetry, | |
generalize_proofs _ h0 h1, | |
exact linear_pmap.Sup_apply | |
(is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) | |
((set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩) ⟨i m, h1⟩, | |
end, | |
..linear_pmap.Sup _ (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) } | |
lemma extension_of.le_max {c : set (extension_of i f)} (hchain : is_chain (≤) c) | |
(hnonempty : c.nonempty) (a : extension_of i f) (ha : a ∈ c) : | |
a ≤ extension_of.max hchain hnonempty := | |
linear_pmap.le_Sup (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) $ | |
(set.mem_image _ _ _).mpr ⟨a, ha, rfl⟩ | |
variables (i f) [fact $ function.injective i] | |
instance extension_of.inhabited : inhabited (extension_of i f) := | |
{ default := | |
{ domain := i.range, | |
to_fun := | |
{ to_fun := λ x, f x.2.some, | |
map_add' := λ x y, begin | |
have eq1 : _ + _ = (x + y).1 := congr_arg2 (+) x.2.some_spec y.2.some_spec, | |
rw [← map_add, ← (x + y).2.some_spec] at eq1, | |
rw [← fact.out (function.injective i) eq1, map_add], | |
end, | |
map_smul' := λ r x, begin | |
have eq1 : r • _ = (r • x).1 := congr_arg ((•) r) x.2.some_spec, | |
rw [← linear_map.map_smul, ← (r • x).2.some_spec] at eq1, | |
rw [ring_hom.id_apply, ← fact.out (function.injective i) eq1, linear_map.map_smul], | |
end }, | |
le := le_refl _, | |
is_extension := λ m, begin | |
simp only [linear_pmap.mk_apply, linear_map.coe_mk], | |
congr, | |
exact fact.out (function.injective i) (⟨i m, ⟨_, rfl⟩⟩ : i.range).2.some_spec.symm, | |
end } } | |
/-- Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal | |
`extension_of i f`. -/ | |
def extension_of_max : extension_of i f := | |
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩ | |
(λ c hchain hnonempty, | |
⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩)).some | |
lemma extension_of_max_is_max : | |
∀ (a : extension_of i f), extension_of_max i f ≤ a → a = extension_of_max i f := | |
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩ | |
((λ c hchain hnonempty, | |
⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩))).some_spec | |
variables {f} | |
private lemma extension_of_max_adjoin.aux1 | |
{y : N} | |
(x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : | |
∃ (a : (extension_of_max i f).domain) (b : R), x.1 = a.1 + b • y := | |
begin | |
have mem1 : x.1 ∈ (_ : set _) := x.2, | |
rw submodule.coe_sup at mem1, | |
rcases mem1 with ⟨a, b, a_mem, (b_mem : b ∈ (submodule.span R _ : submodule R N)), eq1⟩, | |
rw submodule.mem_span_singleton at b_mem, | |
rcases b_mem with ⟨z, eq2⟩, | |
exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩, | |
end | |
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `fst` pick an arbitrary such `m`.-/ | |
def extension_of_max_adjoin.fst | |
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : | |
(extension_of_max i f).domain := | |
(extension_of_max_adjoin.aux1 i x).some | |
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `snd` pick an arbitrary such `r`.-/ | |
def extension_of_max_adjoin.snd | |
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : R := | |
(extension_of_max_adjoin.aux1 i x).some_spec.some | |
lemma extension_of_max_adjoin.eqn | |
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : | |
↑x = ↑(extension_of_max_adjoin.fst i x) + (extension_of_max_adjoin.snd i x) • y := | |
(extension_of_max_adjoin.aux1 i x).some_spec.some_spec | |
variables (f) | |
/--the ideal `I = {r | r • y ∈ N}`-/ | |
def extension_of_max_adjoin.ideal (y : N) : | |
ideal R := | |
(extension_of_max i f).domain.comap (linear_map.id.smul_right y) | |
/--A linear map `I ⟶ Q` by `x ↦ f' (x • y)` where `f'` is the maximal extension-/ | |
def extension_of_max_adjoin.ideal_to (y : N) : | |
extension_of_max_adjoin.ideal i f y →ₗ[R] Q := | |
{ to_fun := λ z, (extension_of_max i f).to_linear_pmap ⟨(↑z : R) • y, z.prop⟩, | |
map_add' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_add, add_smul], | |
map_smul' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_smul, mul_smul]; refl } | |
/-- Since we assumed `Q` being Baer, the linear map `x ↦ f' (x • y) : I ⟶ Q` extends to `R ⟶ Q`, | |
call this extended map `φ`-/ | |
def extension_of_max_adjoin.extend_ideal_to (h : module.Baer R Q) (y : N) : R →ₗ[R] Q := | |
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some | |
lemma extension_of_max_adjoin.extend_ideal_to_is_extension (h : module.Baer R Q) (y : N) : | |
∀ (x : R) (mem : x ∈ extension_of_max_adjoin.ideal i f y), | |
extension_of_max_adjoin.extend_ideal_to i f h y x = | |
extension_of_max_adjoin.ideal_to i f y ⟨x, mem⟩ := | |
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some_spec | |
lemma extension_of_max_adjoin.extend_ideal_to_wd' (h : module.Baer R Q) {y : N} (r : R) | |
(eq1 : r • y = 0) : | |
extension_of_max_adjoin.extend_ideal_to i f h y r = 0 := | |
begin | |
rw extension_of_max_adjoin.extend_ideal_to_is_extension i f h y r | |
(by rw eq1; exact submodule.zero_mem _ : r • y ∈ _), | |
simp only [extension_of_max_adjoin.ideal_to, linear_map.coe_mk, eq1, subtype.coe_mk, | |
← add_submonoid_class.zero_def, (extension_of_max i f).to_linear_pmap.map_zero] | |
end | |
lemma extension_of_max_adjoin.extend_ideal_to_wd (h : module.Baer R Q) {y : N} (r r' : R) | |
(eq1 : r • y = r' • y) : | |
extension_of_max_adjoin.extend_ideal_to i f h y r = | |
extension_of_max_adjoin.extend_ideal_to i f h y r' := | |
begin | |
rw [← sub_eq_zero, ← map_sub], | |
convert extension_of_max_adjoin.extend_ideal_to_wd' i f h (r - r') _, | |
rw [sub_smul, sub_eq_zero, eq1], | |
end | |
lemma extension_of_max_adjoin.extend_ideal_to_eq (h : module.Baer R Q) {y : N} (r : R) | |
(hr : r • y ∈ (extension_of_max i f).domain) : | |
extension_of_max_adjoin.extend_ideal_to i f h y r = | |
(extension_of_max i f).to_linear_pmap ⟨r • y, hr⟩ := | |
by simp only [extension_of_max_adjoin.extend_ideal_to_is_extension i f h _ _ hr, | |
extension_of_max_adjoin.ideal_to, linear_map.coe_mk, subtype.coe_mk] | |
/--We can finally define a linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` | |
-/ | |
def extension_of_max_adjoin.extension_to_fun (h : module.Baer R Q) | |
{y : N} : | |
(extension_of_max i f).domain ⊔ submodule.span R {y} → Q := | |
λ x, (extension_of_max i f).to_linear_pmap (extension_of_max_adjoin.fst i x) + | |
extension_of_max_adjoin.extend_ideal_to i f h y (extension_of_max_adjoin.snd i x) | |
lemma extension_of_max_adjoin.extension_to_fun_wd (h : module.Baer R Q) | |
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) | |
(a : (extension_of_max i f).domain) (r : R) | |
(eq1 : ↑x = ↑a + r • y) : | |
extension_of_max_adjoin.extension_to_fun i f h x = | |
(extension_of_max i f).to_linear_pmap a + | |
extension_of_max_adjoin.extend_ideal_to i f h y r := | |
begin | |
cases a with a ha, | |
rw subtype.coe_mk at eq1, | |
have eq2 : (extension_of_max_adjoin.fst i x - a : N) = (r - extension_of_max_adjoin.snd i x) • y, | |
{ rwa [extension_of_max_adjoin.eqn, ← sub_eq_zero, ←sub_sub_sub_eq, | |
sub_eq_zero, ← sub_smul] at eq1 }, | |
have eq3 := extension_of_max_adjoin.extend_ideal_to_eq i f h (r - extension_of_max_adjoin.snd i x) | |
(by rw ← eq2; exact submodule.sub_mem _ (extension_of_max_adjoin.fst i x).2 ha), | |
simp only [map_sub, sub_smul, sub_eq_iff_eq_add] at eq3, | |
unfold extension_of_max_adjoin.extension_to_fun, | |
rw [eq3, ← add_assoc, ← (extension_of_max i f).to_linear_pmap.map_add, add_mem_class.mk_add_mk], | |
congr, | |
ext, | |
rw [subtype.coe_mk, add_sub, ← eq1], | |
exact eq_sub_of_add_eq (extension_of_max_adjoin.eqn _ _).symm | |
end | |
/--The linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` is an extension of `f`-/ | |
def extension_of_max_adjoin (h : module.Baer R Q) (y : N) : | |
extension_of i f := | |
{ domain := (extension_of_max i f).domain ⊔ submodule.span R {y}, | |
le := le_trans (extension_of_max i f).le le_sup_left, | |
to_fun := | |
{ to_fun := extension_of_max_adjoin.extension_to_fun i f h, | |
map_add' := λ a b, begin | |
have eq1 : ↑a + ↑b = | |
↑((extension_of_max_adjoin.fst i a) + (extension_of_max_adjoin.fst i b)) + | |
(extension_of_max_adjoin.snd i a + extension_of_max_adjoin.snd i b) • y, | |
{ rw [extension_of_max_adjoin.eqn, extension_of_max_adjoin.eqn, add_smul], | |
abel, }, | |
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (a + b) _ _ eq1, | |
linear_pmap.map_add, map_add], | |
unfold extension_of_max_adjoin.extension_to_fun, | |
abel, | |
end, | |
map_smul' := λ r a, begin | |
rw [ring_hom.id_apply], | |
have eq1 : r • ↑a = ↑(r • extension_of_max_adjoin.fst i a) + | |
(r • extension_of_max_adjoin.snd i a) • y, | |
{ rw [extension_of_max_adjoin.eqn, smul_add, smul_eq_mul, mul_smul], | |
refl, }, | |
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (r • a) _ _ eq1, | |
linear_map.map_smul, linear_pmap.map_smul, ← smul_add], | |
congr', | |
end }, | |
is_extension := λ m, begin | |
simp only [linear_pmap.mk_apply, linear_map.coe_mk], | |
rw [(extension_of_max i f).is_extension, extension_of_max_adjoin.extension_to_fun_wd i f h | |
_ ⟨i m, _⟩ 0 _, map_zero, add_zero], | |
simp, | |
end } | |
lemma extension_of_max_le (h : module.Baer R Q) {y : N} : | |
extension_of_max i f ≤ extension_of_max_adjoin i f h y := | |
⟨le_sup_left, λ x x' EQ, begin | |
symmetry, | |
change extension_of_max_adjoin.extension_to_fun i f h _ = _, | |
rw [extension_of_max_adjoin.extension_to_fun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero], | |
end⟩ | |
lemma extension_of_max_to_submodule_eq_top (h : module.Baer R Q) : | |
(extension_of_max i f).domain = ⊤ := | |
begin | |
refine submodule.eq_top_iff'.mpr (λ y, _), | |
rw [← extension_of_max_is_max i f _ (extension_of_max_le i f h), extension_of_max_adjoin, | |
submodule.mem_sup], | |
exact ⟨0, submodule.zero_mem _, y, submodule.mem_span_singleton_self _, zero_add _⟩ | |
end | |
/--**Baer's criterion** for injective module : a Baer module is an injective module, i.e. if every | |
linear map from an ideal can be extended, then the module is injective.-/ | |
protected theorem injective (h : module.Baer R Q) : | |
module.injective R Q := | |
{ out := λ X Y ins1 ins2 ins3 ins4 i hi f, begin | |
haveI : fact (function.injective i) := ⟨hi⟩, | |
exact ⟨{ to_fun := λ y, (extension_of_max i f).to_linear_pmap | |
⟨y, (extension_of_max_to_submodule_eq_top i f h).symm ▸ trivial⟩, | |
map_add' := λ x y, by { rw ← linear_pmap.map_add, congr, }, | |
map_smul' := λ r x, by { rw ← linear_pmap.map_smul, congr } }, | |
λ x, ((extension_of_max i f).is_extension x).symm⟩, | |
end } | |
end module.Baer | |