Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.5 kB
/-
Copyright (c) 2022 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang
-/
import algebra.category.Module.abelian
import category_theory.preadditive.injective
import ring_theory.ideal.basic
/-!
# Injective modules
## Main definitions
* `module.injective`: an `R`-module `Q` is injective if and only if every injective `R`-linear
map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there
is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f`
```
X --- f ---> Y
|
| g
v
Q
```
* `module.Baer`: an `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an
`ideal R` extends to an `R`-linear map `R ⟶ Q`
## Main statements
* `module.Baer.criterion`: an `R`-module is injective if it is Baer.
-/
noncomputable theory
universes u v
variables (R : Type u) [ring R] (Q : Type (max u v)) [add_comm_group Q] [module R Q]
/--An `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear
map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map
`h : Y ⟶ Q` such that `g = h ∘ f`
```
X --- f ---> Y
|
| g
v
Q
```
-/
class module.injective : Prop :=
(out : ∀ (X Y : Type (max u v)) [add_comm_group X] [add_comm_group Y] [module R X] [module R Y]
(f : X →ₗ[R] Y) (hf : function.injective f) (g : X →ₗ[R] Q),
∃ (h : Y →ₗ[R] Q), ∀ x, h (f x) = g x)
lemma module.injective_object_of_injective_module [module.injective.{u v} R Q] :
category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
{ factors := λ X Y g f mn, begin
rcases module.injective.out X Y f ((Module.mono_iff_injective f).mp mn) g with ⟨h, eq1⟩,
exact ⟨h, linear_map.ext eq1⟩,
end }
lemma module.injective_module_of_injective_object
[category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R)] :
module.injective.{u v} R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 f hf g, begin
resetI,
rcases @category_theory.injective.factors (Module R) _ ⟨Q⟩ _ ⟨X⟩ ⟨Y⟩ g f
((Module.mono_iff_injective _).mpr hf) with ⟨h, rfl⟩,
exact ⟨h, λ x, rfl⟩
end }
lemma module.injective_iff_injective_object :
module.injective.{u v} R Q ↔ category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) :=
⟨λ h, @@module.injective_object_of_injective_module R _ Q _ _ h,
λ h, @@module.injective_module_of_injective_object R _ Q _ _ h⟩
/--An `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to
an `R`-linear map `R ⟶ Q`-/
def module.Baer : Prop := ∀ (I : ideal R) (g : I →ₗ[R] Q), ∃ (g' : R →ₗ[R] Q),
∀ (x : R) (mem : xI), g' x = g ⟨x, mem⟩
namespace module.Baer
variables {R Q} {M N : Type (max u v)} [add_comm_group M] [add_comm_group N]
variables [module R M] [module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q)
/-- If we view `M` as a submodule of `N` via the injective linear map `i : M ↪ N`, then a submodule
between `M` and `N` is a submodule `N'` of `N`. To prove Baer's criterion, we need to consider
pairs of `(N', f')` such that `M ≤ N' ≤ N` and `f'` extends `f`. -/
structure extension_of extends linear_pmap R N Q :=
(le : i.rangedomain)
(is_extension : ∀ (m : M), f m = to_linear_pmap ⟨i m, le ⟨m, rfl⟩⟩)
section ext
variables {i f}
@[ext] lemma extension_of.ext {a b : extension_of i f}
(domain_eq : a.domain = b.domain)
(to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄,
(x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y) : a = b :=
begin
rcases a with ⟨a, a_le, e1⟩,
rcases b with ⟨b, b_le, e2⟩,
congr,
exact linear_pmap.ext domain_eq to_fun_eq,
end
lemma extension_of.ext_iff {a b : extension_of i f} :
a = b ↔ ∃ (domain_eq : a.domain = b.domain),
∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y :=
⟨λ r, r ▸ ⟨rfl, λ x y h, congr_arg a.to_fun $ by exact_mod_cast h⟩,
λ ⟨h1, h2⟩, extension_of.ext h1 h2⟩
end ext
instance : has_inf (extension_of i f) :=
{ inf := λ X1 X2,
{ le := λ x hx, (begin
rcases hx withx, rfl⟩,
refineX1.le (set.mem_range_self _), X2.le (set.mem_range_self _), _⟩,
rw [← X1.is_extension x, ← X2.is_extension x],
end : x ∈ X1.to_linear_pmap.eq_locus X2.to_linear_pmap),
is_extension := λ m, X1.is_extension _,
.. (X1.to_linear_pmapX2.to_linear_pmap)} }
instance : semilattice_inf (extension_of i f) :=
function.injective.semilattice_inf extension_of.to_linear_pmap
X Y h, extension_of.ext (by rw h) $ λ x y h', by { induction h, congr, exact_mod_cast h' }) $
λ X Y, linear_pmap.ext rfl $ λ x y h, by { congr, exact_mod_cast h }
variables {R i f}
lemma chain_linear_pmap_of_chain_extension_of
{c : set (extension_of i f)} (hchain : is_chain (≤) c) :
(is_chain (≤) $ (λ x : extension_of i f, x.to_linear_pmap) '' c) :=
begin
rintro _ ⟨a, a_mem, rfl⟩ _ ⟨b, b_mem, rfl⟩ neq,
exact hchain a_mem b_mem (ne_of_apply_ne _ neq),
end
/-- The maximal element of every nonempty chain of `extension_of i f`. -/
def extension_of.max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
(hnonempty : c.nonempty) :
extension_of i f :=
{ le := le_trans hnonempty.some.le $ (linear_pmap.le_Sup _ $ (set.mem_image _ _ _).mpr
⟨hnonempty.some, hnonempty.some_spec, rfl⟩).1,
is_extension := λ m, begin
refine eq.trans (hnonempty.some.is_extension m) _,
symmetry,
generalize_proofs _ h0 h1,
exact linear_pmap.Sup_apply
(is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain)
((set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩) ⟨i m, h1⟩,
end,
..linear_pmap.Sup _ (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) }
lemma extension_of.le_max {c : set (extension_of i f)} (hchain : is_chain (≤) c)
(hnonempty : c.nonempty) (a : extension_of i f) (ha : ac) :
a ≤ extension_of.max hchain hnonempty :=
linear_pmap.le_Sup (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) $
(set.mem_image _ _ _).mpr ⟨a, ha, rfl⟩
variables (i f) [fact $ function.injective i]
instance extension_of.inhabited : inhabited (extension_of i f) :=
{ default :=
{ domain := i.range,
to_fun :=
{ to_fun := λ x, f x.2.some,
map_add' := λ x y, begin
have eq1 : _ + _ = (x + y).1 := congr_arg2 (+) x.2.some_spec y.2.some_spec,
rw [← map_add, ← (x + y).2.some_spec] at eq1,
rw [← fact.out (function.injective i) eq1, map_add],
end,
map_smul' := λ r x, begin
have eq1 : r • _ = (rx).1 := congr_arg ((•) r) x.2.some_spec,
rw [← linear_map.map_smul, ← (rx).2.some_spec] at eq1,
rw [ring_hom.id_apply, ← fact.out (function.injective i) eq1, linear_map.map_smul],
end },
le := le_refl _,
is_extension := λ m, begin
simp only [linear_pmap.mk_apply, linear_map.coe_mk],
congr,
exact fact.out (function.injective i) (⟨i m, ⟨_, rfl⟩⟩ : i.range).2.some_spec.symm,
end } }
/-- Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal
`extension_of i f`. -/
def extension_of_max : extension_of i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
c hchain hnonempty,
extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩)).some
lemma extension_of_max_is_max :
∀ (a : extension_of i f), extension_of_max i f ≤ a → a = extension_of_max i f :=
(@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩
((λ c hchain hnonempty,
extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩))).some_spec
variables {f}
private lemma extension_of_max_adjoin.aux1
{y : N}
(x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
∃ (a : (extension_of_max i f).domain) (b : R), x.1 = a.1 + b • y :=
begin
have mem1 : x.1 ∈ (_ : set _) := x.2,
rw submodule.coe_sup at mem1,
rcases mem1 with ⟨a, b, a_mem, (b_mem : b ∈ (submodule.span R _ : submodule R N)), eq1⟩,
rw submodule.mem_span_singleton at b_mem,
rcases b_mem with ⟨z, eq2⟩,
exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩,
end
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `fst` pick an arbitrary such `m`.-/
def extension_of_max_adjoin.fst
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
(extension_of_max i f).domain :=
(extension_of_max_adjoin.aux1 i x).some
/--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `snd` pick an arbitrary such `r`.-/
def extension_of_max_adjoin.snd
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : R :=
(extension_of_max_adjoin.aux1 i x).some_spec.some
lemma extension_of_max_adjoin.eqn
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) :
↑x = ↑(extension_of_max_adjoin.fst i x) + (extension_of_max_adjoin.snd i x) • y :=
(extension_of_max_adjoin.aux1 i x).some_spec.some_spec
variables (f)
/--the ideal `I = {r | r • y ∈ N}`-/
def extension_of_max_adjoin.ideal (y : N) :
ideal R :=
(extension_of_max i f).domain.comap (linear_map.id.smul_right y)
/--A linear map `I ⟶ Q` by `x ↦ f' (x • y)` where `f'` is the maximal extension-/
def extension_of_max_adjoin.ideal_to (y : N) :
extension_of_max_adjoin.ideal i f y →ₗ[R] Q :=
{ to_fun := λ z, (extension_of_max i f).to_linear_pmap ⟨(↑z : R) • y, z.prop⟩,
map_add' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_add, add_smul],
map_smul' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_smul, mul_smul]; refl }
/-- Since we assumed `Q` being Baer, the linear map `x ↦ f' (x • y) : I ⟶ Q` extends to `R ⟶ Q`,
call this extended map `φ`-/
def extension_of_max_adjoin.extend_ideal_to (h : module.Baer R Q) (y : N) : R →ₗ[R] Q :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some
lemma extension_of_max_adjoin.extend_ideal_to_is_extension (h : module.Baer R Q) (y : N) :
∀ (x : R) (mem : xextension_of_max_adjoin.ideal i f y),
extension_of_max_adjoin.extend_ideal_to i f h y x =
extension_of_max_adjoin.ideal_to i f y ⟨x, mem⟩ :=
(h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some_spec
lemma extension_of_max_adjoin.extend_ideal_to_wd' (h : module.Baer R Q) {y : N} (r : R)
(eq1 : ry = 0) :
extension_of_max_adjoin.extend_ideal_to i f h y r = 0 :=
begin
rw extension_of_max_adjoin.extend_ideal_to_is_extension i f h y r
(by rw eq1; exact submodule.zero_mem _ : ry_),
simp only [extension_of_max_adjoin.ideal_to, linear_map.coe_mk, eq1, subtype.coe_mk,
← add_submonoid_class.zero_def, (extension_of_max i f).to_linear_pmap.map_zero]
end
lemma extension_of_max_adjoin.extend_ideal_to_wd (h : module.Baer R Q) {y : N} (r r' : R)
(eq1 : ry = r'y) :
extension_of_max_adjoin.extend_ideal_to i f h y r =
extension_of_max_adjoin.extend_ideal_to i f h y r' :=
begin
rw [← sub_eq_zero, ← map_sub],
convert extension_of_max_adjoin.extend_ideal_to_wd' i f h (r - r') _,
rw [sub_smul, sub_eq_zero, eq1],
end
lemma extension_of_max_adjoin.extend_ideal_to_eq (h : module.Baer R Q) {y : N} (r : R)
(hr : ry ∈ (extension_of_max i f).domain) :
extension_of_max_adjoin.extend_ideal_to i f h y r =
(extension_of_max i f).to_linear_pmap ⟨r • y, hr⟩ :=
by simp only [extension_of_max_adjoin.extend_ideal_to_is_extension i f h _ _ hr,
extension_of_max_adjoin.ideal_to, linear_map.coe_mk, subtype.coe_mk]
/--We can finally define a linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r`
-/
def extension_of_max_adjoin.extension_to_fun (h : module.Baer R Q)
{y : N} :
(extension_of_max i f).domain ⊔ submodule.span R {y} → Q :=
λ x, (extension_of_max i f).to_linear_pmap (extension_of_max_adjoin.fst i x) +
extension_of_max_adjoin.extend_ideal_to i f h y (extension_of_max_adjoin.snd i x)
lemma extension_of_max_adjoin.extension_to_fun_wd (h : module.Baer R Q)
{y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y})
(a : (extension_of_max i f).domain) (r : R)
(eq1 : ↑x = ↑a + ry) :
extension_of_max_adjoin.extension_to_fun i f h x =
(extension_of_max i f).to_linear_pmap a +
extension_of_max_adjoin.extend_ideal_to i f h y r :=
begin
cases a with a ha,
rw subtype.coe_mk at eq1,
have eq2 : (extension_of_max_adjoin.fst i x - a : N) = (r - extension_of_max_adjoin.snd i x) • y,
{ rwa [extension_of_max_adjoin.eqn, ← sub_eq_zero, ←sub_sub_sub_eq,
sub_eq_zero, ← sub_smul] at eq1 },
have eq3 := extension_of_max_adjoin.extend_ideal_to_eq i f h (r - extension_of_max_adjoin.snd i x)
(by rweq2; exact submodule.sub_mem _ (extension_of_max_adjoin.fst i x).2 ha),
simp only [map_sub, sub_smul, sub_eq_iff_eq_add] at eq3,
unfold extension_of_max_adjoin.extension_to_fun,
rw [eq3, ← add_assoc, ← (extension_of_max i f).to_linear_pmap.map_add, add_mem_class.mk_add_mk],
congr,
ext,
rw [subtype.coe_mk, add_sub, ← eq1],
exact eq_sub_of_add_eq (extension_of_max_adjoin.eqn _ _).symm
end
/--The linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` is an extension of `f`-/
def extension_of_max_adjoin (h : module.Baer R Q) (y : N) :
extension_of i f :=
{ domain := (extension_of_max i f).domain ⊔ submodule.span R {y},
le := le_trans (extension_of_max i f).le le_sup_left,
to_fun :=
{ to_fun := extension_of_max_adjoin.extension_to_fun i f h,
map_add' := λ a b, begin
have eq1 : ↑a + ↑b =
↑((extension_of_max_adjoin.fst i a) + (extension_of_max_adjoin.fst i b)) +
(extension_of_max_adjoin.snd i a + extension_of_max_adjoin.snd i b) • y,
{ rw [extension_of_max_adjoin.eqn, extension_of_max_adjoin.eqn, add_smul],
abel, },
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (a + b) _ _ eq1,
linear_pmap.map_add, map_add],
unfold extension_of_max_adjoin.extension_to_fun,
abel,
end,
map_smul' := λ r a, begin
rw [ring_hom.id_apply],
have eq1 : r • ↑a = ↑(rextension_of_max_adjoin.fst i a) +
(rextension_of_max_adjoin.snd i a) • y,
{ rw [extension_of_max_adjoin.eqn, smul_add, smul_eq_mul, mul_smul],
refl, },
rw [extension_of_max_adjoin.extension_to_fun_wd i f h (ra) _ _ eq1,
linear_map.map_smul, linear_pmap.map_smul, ← smul_add],
congr',
end },
is_extension := λ m, begin
simp only [linear_pmap.mk_apply, linear_map.coe_mk],
rw [(extension_of_max i f).is_extension, extension_of_max_adjoin.extension_to_fun_wd i f h
_ ⟨i m, _⟩ 0 _, map_zero, add_zero],
simp,
end }
lemma extension_of_max_le (h : module.Baer R Q) {y : N} :
extension_of_max i f ≤ extension_of_max_adjoin i f h y :=
⟨le_sup_left, λ x x' EQ, begin
symmetry,
change extension_of_max_adjoin.extension_to_fun i f h _ = _,
rw [extension_of_max_adjoin.extension_to_fun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero],
end⟩
lemma extension_of_max_to_submodule_eq_top (h : module.Baer R Q) :
(extension_of_max i f).domain = ⊤ :=
begin
refine submodule.eq_top_iff'.mpr (λ y, _),
rw [← extension_of_max_is_max i f _ (extension_of_max_le i f h), extension_of_max_adjoin,
submodule.mem_sup],
exact ⟨0, submodule.zero_mem _, y, submodule.mem_span_singleton_self _, zero_add _⟩
end
/--**Baer's criterion** for injective module : a Baer module is an injective module, i.e. if every
linear map from an ideal can be extended, then the module is injective.-/
protected theorem injective (h : module.Baer R Q) :
module.injective R Q :=
{ out := λ X Y ins1 ins2 ins3 ins4 i hi f, begin
haveI : fact (function.injective i) := ⟨hi⟩,
exact ⟨{ to_fun := λ y, (extension_of_max i f).to_linear_pmap
⟨y, (extension_of_max_to_submodule_eq_top i f h).symm ▸ trivial⟩,
map_add' := λ x y, by { rw ← linear_pmap.map_add, congr, },
map_smul' := λ r x, by { rw ← linear_pmap.map_smul, congr } },
λ x, ((extension_of_max i f).is_extension x).symm⟩,
end }
end module.Baer