Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes HΓΆlzl, Mario Carneiro, Anne Baanen, | |
FrΓ©dΓ©ric Dupuis, Heather Macbeth | |
-/ | |
import algebra.module.linear_map | |
/-! | |
# (Semi)linear equivalences | |
In this file we define | |
* `linear_equiv Ο M Mβ`, `M βββ[Ο] Mβ`: an invertible semilinear map. Here, `Ο` is a `ring_hom` | |
from `R` to `Rβ` and an `e : M βββ[Ο] Mβ` satisfies `e (c β’ x) = (Ο c) β’ (e x)`. The plain | |
linear version, with `Ο` being `ring_hom.id R`, is denoted by `M ββ[R] Mβ`, and the | |
star-linear version (with `Ο` being `star_ring_end`) is denoted by `M βββ[R] Mβ`. | |
## Implementation notes | |
To ensure that composition works smoothly for semilinear equivalences, we use the typeclasses | |
`ring_hom_comp_triple`, `ring_hom_inv_pair` and `ring_hom_surjective` from | |
`algebra/ring/comp_typeclasses`. | |
The group structure on automorphisms, `linear_equiv.automorphism_group`, is provided elsewhere. | |
## TODO | |
* Parts of this file have not yet been generalized to semilinear maps | |
## Tags | |
linear equiv, linear equivalences, linear isomorphism, linear isomorphic | |
-/ | |
open function | |
open_locale big_operators | |
universes u u' v w x y z | |
variables {R : Type*} {Rβ : Type*} {Rβ : Type*} {Rβ : Type*} | |
variables {k : Type*} {S : Type*} {M : Type*} {Mβ : Type*} {Mβ : Type*} {Mβ : Type*} | |
variables {Nβ : Type*} {Nβ : Type*} {Nβ : Type*} {Nβ : Type*} {ΞΉ : Type*} | |
section | |
set_option old_structure_cmd true | |
/-- A linear equivalence is an invertible linear map. -/ | |
@[nolint has_nonempty_instance] | |
structure linear_equiv {R : Type*} {S : Type*} [semiring R] [semiring S] (Ο : R β+* S) | |
{Ο' : S β+* R} [ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] | |
(M : Type*) (Mβ : Type*) | |
[add_comm_monoid M] [add_comm_monoid Mβ] [module R M] [module S Mβ] | |
extends linear_map Ο M Mβ, M β+ Mβ | |
attribute [nolint doc_blame] linear_equiv.to_linear_map | |
attribute [nolint doc_blame] linear_equiv.to_add_equiv | |
notation M ` βββ[`:50 Ο `] ` Mβ := linear_equiv Ο M Mβ | |
notation M ` ββ[`:50 R `] ` Mβ := linear_equiv (ring_hom.id R) M Mβ | |
notation M ` βββ[`:50 R `] ` Mβ := linear_equiv (star_ring_end R) M Mβ | |
/-- `semilinear_equiv_class F Ο M Mβ` asserts `F` is a type of bundled `Ο`-semilinear equivs | |
`M β Mβ`. | |
See also `linear_equiv_class F R M Mβ` for the case where `Ο` is the identity map on `R`. | |
A map `f` between an `R`-module and an `S`-module over a ring homomorphism `Ο : R β+* S` | |
is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and | |
`f (c β’ x) = (Ο c) β’ f x`. -/ | |
class semilinear_equiv_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S] | |
(Ο : out_param $ R β+* S) {Ο' : out_param $ S β+* R} | |
[ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] (M Mβ : out_param Type*) | |
[add_comm_monoid M] [add_comm_monoid Mβ] [module R M] [module S Mβ] | |
extends add_equiv_class F M Mβ := | |
(map_smulββ : β (f : F) (r : R) (x : M), f (r β’ x) = (Ο r) β’ f x) | |
-- `R, S, Ο, Ο'` become metavars, but it's OK since they are outparams. | |
attribute [nolint dangerous_instance] semilinear_equiv_class.to_add_equiv_class | |
/-- `linear_equiv_class F R M Mβ` asserts `F` is a type of bundled `R`-linear equivs `M β Mβ`. | |
This is an abbreviation for `semilinear_equiv_class F (ring_hom.id R) M Mβ`. | |
-/ | |
abbreviation linear_equiv_class (F : Type*) (R M Mβ : out_param Type*) | |
[semiring R] [add_comm_monoid M] [add_comm_monoid Mβ] [module R M] [module R Mβ] := | |
semilinear_equiv_class F (ring_hom.id R) M Mβ | |
end | |
namespace semilinear_equiv_class | |
variables (F : Type*) [semiring R] [semiring S] | |
variables [add_comm_monoid M] [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
variables [module R M] [module S Mβ] {Ο : R β+* S} {Ο' : S β+* R} | |
-- `Ο'` becomes a metavariable, but it's OK since it's an outparam | |
@[priority 100, nolint dangerous_instance] | |
instance [ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] [s : semilinear_equiv_class F Ο M Mβ] : | |
semilinear_map_class F Ο M Mβ := | |
{ coe := (coe : F β M β Mβ), | |
coe_injective' := | .coe_injective F _ _ _,|
..s } | |
end semilinear_equiv_class | |
namespace linear_equiv | |
section add_comm_monoid | |
variables {Mβ : Type*} | |
variables [semiring R] [semiring S] | |
section | |
variables [add_comm_monoid M] [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
variables [module R M] [module S Mβ] {Ο : R β+* S} {Ο' : S β+* R} | |
variables [ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] | |
include R | |
include Ο' | |
instance : has_coe (M βββ[Ο] Mβ) (M βββ[Ο] Mβ) := β¨to_linear_mapβ© | |
-- see Note [function coercion] | |
instance : has_coe_to_fun (M βββ[Ο] Mβ) (Ξ» _, M β Mβ) := β¨to_funβ© | |
@[simp] lemma coe_mk {to_fun inv_fun map_add map_smul left_inv right_inv } : | |
β(β¨to_fun, map_add, map_smul, inv_fun, left_inv, right_invβ© : M βββ[Ο] Mβ) = to_fun := | |
rfl | |
-- This exists for compatibility, previously `ββ[R]` extended `β` instead of `β+`. | |
@[nolint doc_blame] | |
def to_equiv : (M βββ[Ο] Mβ) β M β Mβ := Ξ» f, f.to_add_equiv.to_equiv | |
lemma to_equiv_injective : function.injective (to_equiv : (M βββ[Ο] Mβ) β M β Mβ) := | |
Ξ» β¨_, _, _, _, _, _β© β¨_, _, _, _, _, _β© h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h) | |
@[simp] lemma to_equiv_inj {eβ eβ : M βββ[Ο] Mβ} : eβ.to_equiv = eβ.to_equiv β eβ = eβ := | |
to_equiv_injective.eq_iff | |
lemma to_linear_map_injective : | |
injective (coe : (M βββ[Ο] Mβ) β (M βββ[Ο] Mβ)) := | |
Ξ» eβ eβ H, to_equiv_injective $ equiv.ext $ linear_map.congr_fun H | |
@[simp, norm_cast] lemma to_linear_map_inj {eβ eβ : M βββ[Ο] Mβ} : | |
(eβ : M βββ[Ο] Mβ) = eβ β eβ = eβ := | |
to_linear_map_injective.eq_iff | |
instance : semilinear_equiv_class (M βββ[Ο] Mβ) Ο M Mβ := | |
{ coe := linear_equiv.to_fun, | |
inv := linear_equiv.inv_fun, | |
coe_injective' := Ξ» f g hβ hβ, by { cases f, cases g, congr' }, | |
left_inv := linear_equiv.left_inv, | |
right_inv := linear_equiv.right_inv, | |
map_add := map_add', | |
map_smulββ := map_smul' } | |
lemma coe_injective : | |
(M βββ[Ο] Mβ) (M β Mβ) coe_fn := | |
fun_like.coe_injective | |
end | |
section | |
variables [semiring Rβ] [semiring Rβ] [semiring Rβ] | |
variables [add_comm_monoid M] [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
variables [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
variables [add_comm_monoid Nβ] [add_comm_monoid Nβ] | |
variables {module_M : module R M} {module_S_Mβ : module S Mβ} {Ο : R β+* S} {Ο' : S β+* R} | |
variables {reβ : ring_hom_inv_pair Ο Ο'} {reβ : ring_hom_inv_pair Ο' Ο} | |
variables (e e' : M βββ[Ο] Mβ) | |
lemma to_linear_map_eq_coe : e.to_linear_map = (e : M βββ[Ο] Mβ) := rfl | |
@[simp, norm_cast] theorem coe_coe : β(e : M βββ[Ο] Mβ) = e := rfl | |
@[simp] lemma coe_to_equiv : βe.to_equiv = e := rfl | |
@[simp] lemma coe_to_linear_map : βe.to_linear_map = e := rfl | |
@[simp] lemma to_fun_eq_coe : e.to_fun = e := rfl | |
section | |
variables {e e'} | |
@[ext] lemma ext (h : β x, e x = e' x) : e = e' := fun_like.ext _ _ h | |
lemma ext_iff : e = e' β β x, e x = e' x := fun_like.ext_iff | |
protected lemma congr_arg {x x'} : x = x' β e x = e x' := fun_like.congr_arg e | |
protected lemma congr_fun (h : e = e') (x : M) : e x = e' x := fun_like.congr_fun h x | |
end | |
section | |
variables (M R) | |
/-- The identity map is a linear equivalence. -/ | |
@[refl] | |
def refl [module R M] : M ββ[R] M := { .. linear_map.id, .. equiv.refl M } | |
end | |
@[simp] lemma refl_apply [module R M] (x : M) : refl R M x = x := rfl | |
include module_M module_S_Mβ reβ reβ | |
/-- Linear equivalences are symmetric. -/ | |
@[symm] | |
def symm (e : M βββ[Ο] Mβ) : Mβ βββ[Ο'] M := | |
{ to_fun := e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv, | |
inv_fun := e.to_equiv.symm.inv_fun, | |
map_smul' := Ξ» r x, by rw map_smulββ, | |
.. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv, | |
.. e.to_equiv.symm } | |
omit module_M module_S_Mβ reβ reβ | |
/-- See Note [custom simps projection] -/ | |
def simps.symm_apply {R : Type*} {S : Type*} [semiring R] [semiring S] {Ο : R β+* S} | |
{Ο' : S β+* R} [ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] | |
{M : Type*} {Mβ : Type*} [add_comm_monoid M] [add_comm_monoid Mβ] [module R M] [module S Mβ] | |
(e : M βββ[Ο] Mβ) : Mβ β M := e.symm | |
initialize_simps_projections linear_equiv (to_fun β apply, inv_fun β symm_apply) | |
include Ο' | |
@[simp] lemma inv_fun_eq_symm : e.inv_fun = e.symm := rfl | |
omit Ο' | |
@[simp] lemma coe_to_equiv_symm : βe.to_equiv.symm = e.symm := rfl | |
variables {module_Mβ : module Rβ Mβ} {module_Mβ : module Rβ Mβ} {module_Mβ : module Rβ Mβ} | |
variables {module_Nβ : module Rβ Nβ} {module_Nβ : module Rβ Nβ} | |
variables {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} | |
variables {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} | |
variables [ring_hom_comp_triple Οββ Οββ Οββ] | |
variables [ring_hom_comp_triple Οββ Οββ Οββ] | |
variables {reββ : ring_hom_inv_pair Οββ Οββ} {reββ : ring_hom_inv_pair Οββ Οββ} | |
variables [ring_hom_inv_pair Οββ Οββ] {reββ : ring_hom_inv_pair Οββ Οββ} | |
variables {reββ : ring_hom_inv_pair Οββ Οββ} [ring_hom_inv_pair Οββ Οββ] | |
variables (eββ : Mβ βββ[Οββ] Mβ) (eββ : Mβ βββ[Οββ] Mβ) | |
include Οββ | |
/-- Linear equivalences are transitive. -/ | |
-- Note: The linter thinks the `ring_hom_comp_triple` argument is doubled -- it is not. | |
@[trans, nolint unused_arguments] | |
def trans : Mβ βββ[Οββ] Mβ := | |
{ .. eββ.to_linear_map.comp eββ.to_linear_map, | |
.. eββ.to_equiv.trans eββ.to_equiv } | |
omit Οββ | |
infixl ` βͺβ«β `:80 := .trans _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |
(ring_hom.id _) (ring_hom.id _) (ring_hom.id _) | |
(ring_hom.id _) (ring_hom.id _) (ring_hom.id _) | |
ring_hom_comp_triple.ids ring_hom_comp_triple.ids | |
ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids | |
ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids | |
variables {eββ} {eββ} | |
@[simp] lemma coe_to_add_equiv : β(e.to_add_equiv) = e := rfl | |
/-- The two paths coercion can take to an `add_monoid_hom` are equivalent -/ | |
lemma to_add_monoid_hom_commutes : | |
e.to_linear_map.to_add_monoid_hom = e.to_add_equiv.to_add_monoid_hom := | |
rfl | |
include Οββ | |
@[simp] theorem trans_apply (c : Mβ) : | |
(eββ.trans eββ : Mβ βββ[Οββ] Mβ) c = eββ (eββ c) := rfl | |
omit Οββ | |
include Ο' | |
@[simp] theorem apply_symm_apply (c : Mβ) : e (e.symm c) = c := e.right_inv c | |
@[simp] theorem symm_apply_apply (b : M) : e.symm (e b) = b := e.left_inv b | |
omit Ο' | |
include Οββ Οββ Οββ | |
@[simp] lemma trans_symm : (eββ.trans eββ : Mβ βββ[Οββ] Mβ).symm = eββ.symm.trans eββ.symm := | |
rfl | |
lemma symm_trans_apply | |
(c : Mβ) : (eββ.trans eββ : Mβ βββ[Οββ] Mβ).symm c = eββ.symm (eββ.symm c) := rfl | |
omit Οββ Οββ Οββ | |
@[simp] lemma trans_refl : e.trans (refl S Mβ) = e := to_equiv_injective e.to_equiv.trans_refl | |
@[simp] lemma refl_trans : (refl R M).trans e = e := to_equiv_injective e.to_equiv.refl_trans | |
include Ο' | |
lemma symm_apply_eq {x y} : e.symm x = y β x = e y := e.to_equiv.symm_apply_eq | |
lemma eq_symm_apply {x y} : y = e.symm x β e y = x := e.to_equiv.eq_symm_apply | |
omit Ο' | |
lemma eq_comp_symm {Ξ± : Type*} (f : Mβ β Ξ±) (g : Mβ β Ξ±) : | |
f = g β eββ.symm β f β eββ = g := eββ.to_equiv.eq_comp_symm f g | |
lemma comp_symm_eq {Ξ± : Type*} (f : Mβ β Ξ±) (g : Mβ β Ξ±) : | |
g β eββ.symm = f β g = f β eββ := eββ.to_equiv.comp_symm_eq f g | |
lemma eq_symm_comp {Ξ± : Type*} (f : Ξ± β Mβ) (g : Ξ± β Mβ) : | |
f = eββ.symm β g β eββ β f = g := eββ.to_equiv.eq_symm_comp f g | |
lemma symm_comp_eq {Ξ± : Type*} (f : Ξ± β Mβ) (g : Ξ± β Mβ) : | |
eββ.symm β g = f β g = eββ β f := eββ.to_equiv.symm_comp_eq f g | |
variables [ring_hom_comp_triple Οββ Οββ Οββ] [ring_hom_comp_triple Οββ Οββ Οββ] | |
include module_Mβ | |
lemma eq_comp_to_linear_map_symm (f : Mβ βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) : | |
f = g.comp eββ.symm.to_linear_map β f.comp eββ.to_linear_map = g := | |
begin | |
split; intro H; ext, | |
{ simp [H, eββ.to_equiv.eq_comp_symm f g] }, | |
{ simp [βH, βeββ.to_equiv.eq_comp_symm f g] } | |
end | |
lemma comp_to_linear_map_symm_eq (f : Mβ βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) : | |
g.comp eββ.symm.to_linear_map = f β g = f.comp eββ.to_linear_map := | |
begin | |
split; intro H; ext, | |
{ simp [βH, βeββ.to_equiv.comp_symm_eq f g] }, | |
{ simp [H, eββ.to_equiv.comp_symm_eq f g] } | |
end | |
lemma eq_to_linear_map_symm_comp (f : Mβ βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) : | |
f = eββ.symm.to_linear_map.comp g β eββ.to_linear_map.comp f = g := | |
begin | |
split; intro H; ext, | |
{ simp [H, eββ.to_equiv.eq_symm_comp f g] }, | |
{ simp [βH, βeββ.to_equiv.eq_symm_comp f g] } | |
end | |
lemma to_linear_map_symm_comp_eq (f : Mβ βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) : | |
eββ.symm.to_linear_map.comp g = f β g = eββ.to_linear_map.comp f := | |
begin | |
split; intro H; ext, | |
{ simp [βH, βeββ.to_equiv.symm_comp_eq f g] }, | |
{ simp [H, eββ.to_equiv.symm_comp_eq f g] } | |
end | |
omit module_Mβ | |
@[simp] lemma refl_symm [module R M] : (refl R M).symm = linear_equiv.refl R M := rfl | |
@[simp] lemma self_trans_symm [module R M] [module R Mβ] (f : M ββ[R] Mβ) : | |
f.trans f.symm = linear_equiv.refl R M := | |
by { ext x, simp } | |
@[simp] lemma symm_trans_self [module R M] [module R Mβ] (f : M ββ[R] Mβ) : | |
f.symm.trans f = linear_equiv.refl R Mβ := | |
by { ext x, simp } | |
@[simp, norm_cast] lemma refl_to_linear_map [module R M] : | |
(linear_equiv.refl R M : M ββ[R] M) = linear_map.id := | |
rfl | |
@[simp, norm_cast] | |
lemma comp_coe [module R M] [module R Mβ] [module R Mβ] (f : M ββ[R] Mβ) | |
(f' : Mβ ββ[R] Mβ) : (f' : Mβ ββ[R] Mβ).comp (f : M ββ[R] Mβ) = (f.trans f' : M ββ[R] Mβ) := | |
rfl | |
@[simp] lemma mk_coe (hβ hβ f hβ hβ) : | |
(linear_equiv.mk e hβ hβ f hβ hβ : M βββ[Ο] Mβ) = e := ext $ Ξ» _, rfl | |
protected theorem map_add (a b : M) : e (a + b) = e a + e b := map_add e a b | |
protected theorem map_zero : e 0 = 0 := map_zero e | |
-- TODO: `simp` isn't picking up `map_smulββ` for `linear_equiv`s without specifying `map_smulββ f` | |
@[simp] protected theorem map_smulββ (c : R) (x : M) : e (c β’ x) = (Ο c) β’ e x := e.map_smul' c x | |
include module_Nβ module_Nβ | |
theorem map_smul (e : Nβ ββ[Rβ] Nβ) (c : Rβ) (x : Nβ) : | |
e (c β’ x) = c β’ e x := map_smulββ e c x | |
omit module_Nβ module_Nβ | |
@[simp] lemma map_sum {s : finset ΞΉ} (u : ΞΉ β M) : e (β i in s, u i) = β i in s, e (u i) := | |
e.to_linear_map.map_sum | |
@[simp] theorem map_eq_zero_iff {x : M} : e x = 0 β x = 0 := | |
e.to_add_equiv.map_eq_zero_iff | |
theorem map_ne_zero_iff {x : M} : e x β 0 β x β 0 := | |
e.to_add_equiv.map_ne_zero_iff | |
include module_M module_S_Mβ reβ reβ | |
@[simp] theorem symm_symm (e : M βββ[Ο] Mβ): e.symm.symm = e := | |
by { cases e, refl } | |
omit module_M module_S_Mβ reβ reβ | |
lemma symm_bijective [module R M] [module S Mβ] [ring_hom_inv_pair Ο' Ο] | |
[ring_hom_inv_pair Ο Ο'] : function.bijective (symm : (M βββ[Ο] Mβ) β (Mβ βββ[Ο'] M)) := | |
equiv.bijective β¨(symm : (M βββ[Ο] Mβ) β | |
(Mβ βββ[Ο'] M)), (symm : (Mβ βββ[Ο'] M) β (M βββ[Ο] Mβ)), symm_symm, symm_symmβ© | |
@[simp] lemma mk_coe' (f hβ hβ hβ hβ) : (linear_equiv.mk f hβ hβ βe hβ hβ : | |
Mβ βββ[Ο'] M) = e.symm := | |
symm_bijective.injective $ ext $ Ξ» x, rfl | |
@[simp] theorem symm_mk (f hβ hβ hβ hβ) : | |
(β¨e, hβ, hβ, f, hβ, hββ© : M βββ[Ο] Mβ).symm = | |
{ to_fun := f, inv_fun := e, | |
..(β¨e, hβ, hβ, f, hβ, hββ© : M βββ[Ο] Mβ).symm } := rfl | |
@[simp] lemma coe_symm_mk [module R M] [module R Mβ] | |
{to_fun inv_fun map_add map_smul left_inv right_inv} : | |
β((β¨to_fun, map_add, map_smul, inv_fun, left_inv, right_invβ© : M ββ[R] Mβ).symm) = inv_fun := | |
rfl | |
protected lemma bijective : function.bijective e := e.to_equiv.bijective | |
protected lemma injective : function.injective e := e.to_equiv.injective | |
protected lemma surjective : function.surjective e := e.to_equiv.surjective | |
protected lemma image_eq_preimage (s : set M) : e '' s = e.symm β»ΒΉ' s := | |
e.to_equiv.image_eq_preimage s | |
protected lemma image_symm_eq_preimage (s : set Mβ) : e.symm '' s = e β»ΒΉ' s := | |
e.to_equiv.symm.image_eq_preimage s | |
end | |
/-- Interpret a `ring_equiv` `f` as an `f`-semilinear equiv. -/ | |
@[simps] | |
def _root_.ring_equiv.to_semilinear_equiv (f : R β+* S) : | |
by haveI := ring_hom_inv_pair.of_ring_equiv f; | |
haveI := ring_hom_inv_pair.symm (βf : R β+* S) (f.symm : S β+* R); | |
exact (R βββ[(βf : R β+* S)] S) := | |
by exact | |
{ to_fun := f, | |
map_smul' := f.map_mul, | |
.. f} | |
variables [semiring Rβ] [semiring Rβ] [semiring Rβ] | |
variables [add_comm_monoid M] [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
/-- An involutive linear map is a linear equivalence. -/ | |
def of_involutive {Ο Ο' : R β+* R} [ring_hom_inv_pair Ο Ο'] [ring_hom_inv_pair Ο' Ο] | |
{module_M : module R M} (f : M βββ[Ο] M) (hf : involutive f) : | |
M βββ[Ο] M := | |
{ .. f, .. hf.to_perm f } | |
@[simp] lemma coe_of_involutive {Ο Ο' : R β+* R} [ring_hom_inv_pair Ο Ο'] | |
[ring_hom_inv_pair Ο' Ο] {module_M : module R M} (f : M βββ[Ο] M) (hf : involutive f) : | |
β(of_involutive f hf) = f := | |
rfl | |
section restrict_scalars | |
variables (R) [module R M] [module R Mβ] [module S M] [module S Mβ] | |
[linear_map.compatible_smul M Mβ R S] | |
/-- If `M` and `Mβ` are both `R`-semimodules and `S`-semimodules and `R`-semimodule structures | |
are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear | |
equivalence from `M` to `Mβ` is also an `R`-linear equivalence. | |
See also `linear_map.restrict_scalars`. -/ | |
@[simps] | |
def restrict_scalars (f : M ββ[S] Mβ) : M ββ[R] Mβ := | |
{ to_fun := f, | |
inv_fun := f.symm, | |
left_inv := f.left_inv, | |
right_inv := f.right_inv, | |
.. f.to_linear_map.restrict_scalars R } | |
lemma restrict_scalars_injective : | |
function.injective (restrict_scalars R : (M ββ[S] Mβ) β (M ββ[R] Mβ)) := | |
Ξ» f g h, ext (linear_equiv.congr_fun h : _) | |
@[simp] | |
lemma restrict_scalars_inj (f g : M ββ[S] Mβ) : | |
f.restrict_scalars R = g.restrict_scalars R β f = g := | |
(restrict_scalars_injective R).eq_iff | |
end restrict_scalars | |
section automorphisms | |
variables [module R M] | |
instance automorphism_group : group (M ββ[R] M) := | |
{ mul := Ξ» f g, g.trans f, | |
one := linear_equiv.refl R M, | |
inv := Ξ» f, f.symm, | |
mul_assoc := Ξ» f g h, rfl, | |
mul_one := Ξ» f, ext $ Ξ» x, rfl, | |
one_mul := Ξ» f, ext $ Ξ» x, rfl, | |
mul_left_inv := Ξ» f, ext $ f.left_inv } | |
/-- Restriction from `R`-linear automorphisms of `M` to `R`-linear endomorphisms of `M`, | |
promoted to a monoid hom. -/ | |
@[simps] | |
def automorphism_group.to_linear_map_monoid_hom : (M ββ[R] M) β* (M ββ[R] M) := | |
{ to_fun := coe, | |
map_one' := rfl, | |
map_mul' := Ξ» _ _, rfl } | |
/-- The tautological action by `M ββ[R] M` on `M`. | |
This generalizes `function.End.apply_mul_action`. -/ | |
instance apply_distrib_mul_action : distrib_mul_action (M ββ[R] M) M := | |
{ smul := ($), | |
smul_zero := linear_equiv.map_zero, | |
smul_add := linear_equiv.map_add, | |
one_smul := Ξ» _, rfl, | |
mul_smul := Ξ» _ _ _, rfl } | |
@[simp] protected lemma smul_def (f : M ββ[R] M) (a : M) : | |
f β’ a = f a := rfl | |
/-- `linear_equiv.apply_distrib_mul_action` is faithful. -/ | |
instance apply_has_faithful_smul : has_faithful_smul (M ββ[R] M) M := | |
β¨Ξ» _ _, linear_equiv.extβ© | |
instance apply_smul_comm_class : smul_comm_class R (M ββ[R] M) M := | |
{ smul_comm := Ξ» r e m, (e.map_smul r m).symm } | |
instance apply_smul_comm_class' : smul_comm_class (M ββ[R] M) R M := | |
{ smul_comm := linear_equiv.map_smul } | |
end automorphisms | |
end add_comm_monoid | |
end linear_equiv | |
namespace module | |
/-- `g : R β+* S` is `R`-linear when the module structure on `S` is `module.comp_hom S g` . -/ | |
@[simps] | |
def comp_hom.to_linear_equiv {R S : Type*} [semiring R] [semiring S] (g : R β+* S) : | |
(by haveI := comp_hom S (βg : R β+* S); exact (R ββ[R] S)) := | |
by exact | |
{ to_fun := (g : R β S), | |
inv_fun := (g.symm : S β R), | |
map_smul' := g.map_mul, | |
..g } | |
end module | |
namespace distrib_mul_action | |
variables (R M) [semiring R] [add_comm_monoid M] [module R M] | |
variables [group S] [distrib_mul_action S M] [smul_comm_class S R M] | |
/-- Each element of the group defines a linear equivalence. | |
This is a stronger version of `distrib_mul_action.to_add_equiv`. -/ | |
@[simps] | |
def to_linear_equiv (s : S) : M ββ[R] M := | |
{ ..to_add_equiv M s, | |
..to_linear_map R M s } | |
/-- Each element of the group defines a module automorphism. | |
This is a stronger version of `distrib_mul_action.to_add_aut`. -/ | |
@[simps] | |
def to_module_aut : S β* M ββ[R] M := | |
{ to_fun := to_linear_equiv R M, | |
map_one' := linear_equiv.ext $ one_smul _, | |
map_mul' := Ξ» a b, linear_equiv.ext $ mul_smul _ _ } | |
end distrib_mul_action | |
namespace add_equiv | |
section add_comm_monoid | |
variables [semiring R] [add_comm_monoid M] [add_comm_monoid Mβ] [add_comm_monoid Mβ] | |
variables [module R M] [module R Mβ] | |
variable (e : M β+ Mβ) | |
/-- An additive equivalence whose underlying function preserves `smul` is a linear equivalence. -/ | |
def to_linear_equiv (h : β (c : R) x, e (c β’ x) = c β’ e x) : M ββ[R] Mβ := | |
{ map_smul' := h, .. e, } | |
@[simp] lemma coe_to_linear_equiv (h : β (c : R) x, e (c β’ x) = c β’ e x) : | |
β(e.to_linear_equiv h) = e := | |
rfl | |
@[simp] lemma coe_to_linear_equiv_symm (h : β (c : R) x, e (c β’ x) = c β’ e x) : | |
β(e.to_linear_equiv h).symm = e.symm := | |
rfl | |
/-- An additive equivalence between commutative additive monoids is a linear equivalence between | |
β-modules -/ | |
def to_nat_linear_equiv : M ββ[β] Mβ := | |
e.to_linear_equiv $ Ξ» c a, by { erw e.to_add_monoid_hom.map_nsmul, refl } | |
@[simp] lemma coe_to_nat_linear_equiv : | |
β(e.to_nat_linear_equiv) = e := rfl | |
@[simp] lemma to_nat_linear_equiv_to_add_equiv : | |
e.to_nat_linear_equiv.to_add_equiv = e := by { ext, refl } | |
@[simp] lemma _root_.linear_equiv.to_add_equiv_to_nat_linear_equiv | |
(e : M ββ[β] Mβ) : e.to_add_equiv.to_nat_linear_equiv = e := fun_like.coe_injective rfl | |
@[simp] lemma to_nat_linear_equiv_symm : | |
(e.to_nat_linear_equiv).symm = e.symm.to_nat_linear_equiv := rfl | |
@[simp] lemma to_nat_linear_equiv_refl : | |
((add_equiv.refl M).to_nat_linear_equiv) = linear_equiv.refl β M := rfl | |
@[simp] lemma to_nat_linear_equiv_trans (eβ : Mβ β+ Mβ) : | |
(e.to_nat_linear_equiv).trans (eβ.to_nat_linear_equiv) = (e.trans eβ).to_nat_linear_equiv := rfl | |
end add_comm_monoid | |
section add_comm_group | |
variables [add_comm_group M] [add_comm_group Mβ] [add_comm_group Mβ] | |
variable (e : M β+ Mβ) | |
/-- An additive equivalence between commutative additive groups is a linear | |
equivalence between β€-modules -/ | |
def to_int_linear_equiv : M ββ[β€] Mβ := | |
e.to_linear_equiv $ Ξ» c a, e.to_add_monoid_hom.map_zsmul a c | |
@[simp] lemma coe_to_int_linear_equiv : | |
β(e.to_int_linear_equiv) = e := rfl | |
@[simp] lemma to_int_linear_equiv_to_add_equiv : | |
e.to_int_linear_equiv.to_add_equiv = e := by { ext, refl } | |
@[simp] lemma _root_.linear_equiv.to_add_equiv_to_int_linear_equiv | |
(e : M ββ[β€] Mβ) : e.to_add_equiv.to_int_linear_equiv = e := fun_like.coe_injective rfl | |
@[simp] lemma to_int_linear_equiv_symm : | |
(e.to_int_linear_equiv).symm = e.symm.to_int_linear_equiv := rfl | |
@[simp] lemma to_int_linear_equiv_refl : | |
((add_equiv.refl M).to_int_linear_equiv) = linear_equiv.refl β€ M := rfl | |
@[simp] lemma to_int_linear_equiv_trans (eβ : Mβ β+ Mβ) : | |
(e.to_int_linear_equiv).trans (eβ.to_int_linear_equiv) = (e.trans eβ).to_int_linear_equiv := | |
rfl | |
end add_comm_group | |
end add_equiv | |