Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
24.6 kB
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes HΓΆlzl, Mario Carneiro, Anne Baanen,
FrΓ©dΓ©ric Dupuis, Heather Macbeth
-/
import algebra.module.linear_map
/-!
# (Semi)linear equivalences
In this file we define
* `linear_equiv Οƒ M Mβ‚‚`, `M ≃ₛₗ[Οƒ] Mβ‚‚`: an invertible semilinear map. Here, `Οƒ` is a `ring_hom`
from `R` to `Rβ‚‚` and an `e : M ≃ₛₗ[Οƒ] Mβ‚‚` satisfies `e (c β€’ x) = (Οƒ c) β€’ (e x)`. The plain
linear version, with `Οƒ` being `ring_hom.id R`, is denoted by `M ≃ₗ[R] Mβ‚‚`, and the
star-linear version (with `Οƒ` being `star_ring_end`) is denoted by `M ≃ₗ⋆[R] Mβ‚‚`.
## Implementation notes
To ensure that composition works smoothly for semilinear equivalences, we use the typeclasses
`ring_hom_comp_triple`, `ring_hom_inv_pair` and `ring_hom_surjective` from
`algebra/ring/comp_typeclasses`.
The group structure on automorphisms, `linear_equiv.automorphism_group`, is provided elsewhere.
## TODO
* Parts of this file have not yet been generalized to semilinear maps
## Tags
linear equiv, linear equivalences, linear isomorphism, linear isomorphic
-/
open function
open_locale big_operators
universes u u' v w x y z
variables {R : Type*} {R₁ : Type*} {Rβ‚‚ : Type*} {R₃ : Type*}
variables {k : Type*} {S : Type*} {M : Type*} {M₁ : Type*} {Mβ‚‚ : Type*} {M₃ : Type*}
variables {N₁ : Type*} {Nβ‚‚ : Type*} {N₃ : Type*} {Nβ‚„ : Type*} {ΞΉ : Type*}
section
set_option old_structure_cmd true
/-- A linear equivalence is an invertible linear map. -/
@[nolint has_nonempty_instance]
structure linear_equiv {R : Type*} {S : Type*} [semiring R] [semiring S] (Οƒ : R β†’+* S)
{Οƒ' : S β†’+* R} [ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ]
(M : Type*) (Mβ‚‚ : Type*)
[add_comm_monoid M] [add_comm_monoid Mβ‚‚] [module R M] [module S Mβ‚‚]
extends linear_map Οƒ M Mβ‚‚, M ≃+ Mβ‚‚
attribute [nolint doc_blame] linear_equiv.to_linear_map
attribute [nolint doc_blame] linear_equiv.to_add_equiv
notation M ` ≃ₛₗ[`:50 Οƒ `] ` Mβ‚‚ := linear_equiv Οƒ M Mβ‚‚
notation M ` ≃ₗ[`:50 R `] ` Mβ‚‚ := linear_equiv (ring_hom.id R) M Mβ‚‚
notation M ` ≃ₗ⋆[`:50 R `] ` Mβ‚‚ := linear_equiv (star_ring_end R) M Mβ‚‚
/-- `semilinear_equiv_class F Οƒ M Mβ‚‚` asserts `F` is a type of bundled `Οƒ`-semilinear equivs
`M β†’ Mβ‚‚`.
See also `linear_equiv_class F R M Mβ‚‚` for the case where `Οƒ` is the identity map on `R`.
A map `f` between an `R`-module and an `S`-module over a ring homomorphism `Οƒ : R β†’+* S`
is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and
`f (c β€’ x) = (Οƒ c) β€’ f x`. -/
class semilinear_equiv_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S]
(Οƒ : out_param $ R β†’+* S) {Οƒ' : out_param $ S β†’+* R}
[ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ] (M Mβ‚‚ : out_param Type*)
[add_comm_monoid M] [add_comm_monoid Mβ‚‚] [module R M] [module S Mβ‚‚]
extends add_equiv_class F M Mβ‚‚ :=
(map_smulβ‚›β‚— : βˆ€ (f : F) (r : R) (x : M), f (r β€’ x) = (Οƒ r) β€’ f x)
-- `R, S, Οƒ, Οƒ'` become metavars, but it's OK since they are outparams.
attribute [nolint dangerous_instance] semilinear_equiv_class.to_add_equiv_class
/-- `linear_equiv_class F R M Mβ‚‚` asserts `F` is a type of bundled `R`-linear equivs `M β†’ Mβ‚‚`.
This is an abbreviation for `semilinear_equiv_class F (ring_hom.id R) M Mβ‚‚`.
-/
abbreviation linear_equiv_class (F : Type*) (R M Mβ‚‚ : out_param Type*)
[semiring R] [add_comm_monoid M] [add_comm_monoid Mβ‚‚] [module R M] [module R Mβ‚‚] :=
semilinear_equiv_class F (ring_hom.id R) M Mβ‚‚
end
namespace semilinear_equiv_class
variables (F : Type*) [semiring R] [semiring S]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid Mβ‚‚]
variables [module R M] [module S Mβ‚‚] {Οƒ : R β†’+* S} {Οƒ' : S β†’+* R}
-- `Οƒ'` becomes a metavariable, but it's OK since it's an outparam
@[priority 100, nolint dangerous_instance]
instance [ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ] [s : semilinear_equiv_class F Οƒ M Mβ‚‚] :
semilinear_map_class F Οƒ M Mβ‚‚ :=
{ coe := (coe : F β†’ M β†’ Mβ‚‚),
coe_injective' := @fun_like.coe_injective F _ _ _,
..s }
end semilinear_equiv_class
namespace linear_equiv
section add_comm_monoid
variables {Mβ‚„ : Type*}
variables [semiring R] [semiring S]
section
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid Mβ‚‚]
variables [module R M] [module S Mβ‚‚] {Οƒ : R β†’+* S} {Οƒ' : S β†’+* R}
variables [ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ]
include R
include Οƒ'
instance : has_coe (M ≃ₛₗ[Οƒ] Mβ‚‚) (M β†’β‚›β‚—[Οƒ] Mβ‚‚) := ⟨to_linear_map⟩
-- see Note [function coercion]
instance : has_coe_to_fun (M ≃ₛₗ[Οƒ] Mβ‚‚) (Ξ» _, M β†’ Mβ‚‚) := ⟨to_fun⟩
@[simp] lemma coe_mk {to_fun inv_fun map_add map_smul left_inv right_inv } :
⇑(⟨to_fun, map_add, map_smul, inv_fun, left_inv, right_inv⟩ : M ≃ₛₗ[Οƒ] Mβ‚‚) = to_fun :=
rfl
-- This exists for compatibility, previously `≃ₗ[R]` extended `≃` instead of `≃+`.
@[nolint doc_blame]
def to_equiv : (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’ M ≃ Mβ‚‚ := Ξ» f, f.to_add_equiv.to_equiv
lemma to_equiv_injective : function.injective (to_equiv : (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’ M ≃ Mβ‚‚) :=
λ ⟨_, _, _, _, _, _⟩ ⟨_, _, _, _, _, _⟩ h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h)
@[simp] lemma to_equiv_inj {e₁ eβ‚‚ : M ≃ₛₗ[Οƒ] Mβ‚‚} : e₁.to_equiv = eβ‚‚.to_equiv ↔ e₁ = eβ‚‚ :=
to_equiv_injective.eq_iff
lemma to_linear_map_injective :
injective (coe : (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’ (M β†’β‚›β‚—[Οƒ] Mβ‚‚)) :=
Ξ» e₁ eβ‚‚ H, to_equiv_injective $ equiv.ext $ linear_map.congr_fun H
@[simp, norm_cast] lemma to_linear_map_inj {e₁ eβ‚‚ : M ≃ₛₗ[Οƒ] Mβ‚‚} :
(e₁ : M β†’β‚›β‚—[Οƒ] Mβ‚‚) = eβ‚‚ ↔ e₁ = eβ‚‚ :=
to_linear_map_injective.eq_iff
instance : semilinear_equiv_class (M ≃ₛₗ[Οƒ] Mβ‚‚) Οƒ M Mβ‚‚ :=
{ coe := linear_equiv.to_fun,
inv := linear_equiv.inv_fun,
coe_injective' := Ξ» f g h₁ hβ‚‚, by { cases f, cases g, congr' },
left_inv := linear_equiv.left_inv,
right_inv := linear_equiv.right_inv,
map_add := map_add',
map_smulβ‚›β‚— := map_smul' }
lemma coe_injective :
@injective (M ≃ₛₗ[Οƒ] Mβ‚‚) (M β†’ Mβ‚‚) coe_fn :=
fun_like.coe_injective
end
section
variables [semiring R₁] [semiring Rβ‚‚] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid Mβ‚‚]
variables [add_comm_monoid M₃] [add_comm_monoid Mβ‚„]
variables [add_comm_monoid N₁] [add_comm_monoid Nβ‚‚]
variables {module_M : module R M} {module_S_Mβ‚‚ : module S Mβ‚‚} {Οƒ : R β†’+* S} {Οƒ' : S β†’+* R}
variables {re₁ : ring_hom_inv_pair Οƒ Οƒ'} {reβ‚‚ : ring_hom_inv_pair Οƒ' Οƒ}
variables (e e' : M ≃ₛₗ[Οƒ] Mβ‚‚)
lemma to_linear_map_eq_coe : e.to_linear_map = (e : M β†’β‚›β‚—[Οƒ] Mβ‚‚) := rfl
@[simp, norm_cast] theorem coe_coe : ⇑(e : M β†’β‚›β‚—[Οƒ] Mβ‚‚) = e := rfl
@[simp] lemma coe_to_equiv : ⇑e.to_equiv = e := rfl
@[simp] lemma coe_to_linear_map : ⇑e.to_linear_map = e := rfl
@[simp] lemma to_fun_eq_coe : e.to_fun = e := rfl
section
variables {e e'}
@[ext] lemma ext (h : βˆ€ x, e x = e' x) : e = e' := fun_like.ext _ _ h
lemma ext_iff : e = e' ↔ βˆ€ x, e x = e' x := fun_like.ext_iff
protected lemma congr_arg {x x'} : x = x' β†’ e x = e x' := fun_like.congr_arg e
protected lemma congr_fun (h : e = e') (x : M) : e x = e' x := fun_like.congr_fun h x
end
section
variables (M R)
/-- The identity map is a linear equivalence. -/
@[refl]
def refl [module R M] : M ≃ₗ[R] M := { .. linear_map.id, .. equiv.refl M }
end
@[simp] lemma refl_apply [module R M] (x : M) : refl R M x = x := rfl
include module_M module_S_Mβ‚‚ re₁ reβ‚‚
/-- Linear equivalences are symmetric. -/
@[symm]
def symm (e : M ≃ₛₗ[Οƒ] Mβ‚‚) : Mβ‚‚ ≃ₛₗ[Οƒ'] M :=
{ to_fun := e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv,
inv_fun := e.to_equiv.symm.inv_fun,
map_smul' := Ξ» r x, by rw map_smulβ‚›β‚—,
.. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv,
.. e.to_equiv.symm }
omit module_M module_S_Mβ‚‚ re₁ reβ‚‚
/-- See Note [custom simps projection] -/
def simps.symm_apply {R : Type*} {S : Type*} [semiring R] [semiring S] {Οƒ : R β†’+* S}
{Οƒ' : S β†’+* R} [ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ]
{M : Type*} {Mβ‚‚ : Type*} [add_comm_monoid M] [add_comm_monoid Mβ‚‚] [module R M] [module S Mβ‚‚]
(e : M ≃ₛₗ[Οƒ] Mβ‚‚) : Mβ‚‚ β†’ M := e.symm
initialize_simps_projections linear_equiv (to_fun β†’ apply, inv_fun β†’ symm_apply)
include Οƒ'
@[simp] lemma inv_fun_eq_symm : e.inv_fun = e.symm := rfl
omit Οƒ'
@[simp] lemma coe_to_equiv_symm : ⇑e.to_equiv.symm = e.symm := rfl
variables {module_M₁ : module R₁ M₁} {module_Mβ‚‚ : module Rβ‚‚ Mβ‚‚} {module_M₃ : module R₃ M₃}
variables {module_N₁ : module R₁ N₁} {module_Nβ‚‚ : module R₁ Nβ‚‚}
variables {σ₁₂ : R₁ β†’+* Rβ‚‚} {σ₂₃ : Rβ‚‚ β†’+* R₃} {σ₁₃ : R₁ β†’+* R₃}
variables {σ₂₁ : Rβ‚‚ β†’+* R₁} {σ₃₂ : R₃ β†’+* Rβ‚‚} {σ₃₁ : R₃ β†’+* R₁}
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables [ring_hom_comp_triple σ₃₂ σ₂₁ σ₃₁]
variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₃ : ring_hom_inv_pair σ₂₃ σ₃₂}
variables [ring_hom_inv_pair σ₁₃ σ₃₁] {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂}
variables {re₃₂ : ring_hom_inv_pair σ₃₂ σ₂₃} [ring_hom_inv_pair σ₃₁ σ₁₃]
variables (e₁₂ : M₁ ≃ₛₗ[σ₁₂] Mβ‚‚) (e₂₃ : Mβ‚‚ ≃ₛₗ[σ₂₃] M₃)
include σ₃₁
/-- Linear equivalences are transitive. -/
-- Note: The linter thinks the `ring_hom_comp_triple` argument is doubled -- it is not.
@[trans, nolint unused_arguments]
def trans : M₁ ≃ₛₗ[σ₁₃] M₃ :=
{ .. e₂₃.to_linear_map.comp e₁₂.to_linear_map,
.. e₁₂.to_equiv.trans e₂₃.to_equiv }
omit σ₃₁
infixl ` β‰ͺ≫ₗ `:80 := @linear_equiv.trans _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(ring_hom.id _) (ring_hom.id _) (ring_hom.id _)
(ring_hom.id _) (ring_hom.id _) (ring_hom.id _)
ring_hom_comp_triple.ids ring_hom_comp_triple.ids
ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids
ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids
variables {e₁₂} {e₂₃}
@[simp] lemma coe_to_add_equiv : ⇑(e.to_add_equiv) = e := rfl
/-- The two paths coercion can take to an `add_monoid_hom` are equivalent -/
lemma to_add_monoid_hom_commutes :
e.to_linear_map.to_add_monoid_hom = e.to_add_equiv.to_add_monoid_hom :=
rfl
include σ₃₁
@[simp] theorem trans_apply (c : M₁) :
(e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃) c = e₂₃ (e₁₂ c) := rfl
omit σ₃₁
include Οƒ'
@[simp] theorem apply_symm_apply (c : Mβ‚‚) : e (e.symm c) = c := e.right_inv c
@[simp] theorem symm_apply_apply (b : M) : e.symm (e b) = b := e.left_inv b
omit Οƒ'
include σ₃₁ σ₂₁ σ₃₂
@[simp] lemma trans_symm : (e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃).symm = e₂₃.symm.trans e₁₂.symm :=
rfl
lemma symm_trans_apply
(c : M₃) : (e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃).symm c = e₁₂.symm (e₂₃.symm c) := rfl
omit σ₃₁ σ₂₁ σ₃₂
@[simp] lemma trans_refl : e.trans (refl S Mβ‚‚) = e := to_equiv_injective e.to_equiv.trans_refl
@[simp] lemma refl_trans : (refl R M).trans e = e := to_equiv_injective e.to_equiv.refl_trans
include Οƒ'
lemma symm_apply_eq {x y} : e.symm x = y ↔ x = e y := e.to_equiv.symm_apply_eq
lemma eq_symm_apply {x y} : y = e.symm x ↔ e y = x := e.to_equiv.eq_symm_apply
omit Οƒ'
lemma eq_comp_symm {Ξ± : Type*} (f : Mβ‚‚ β†’ Ξ±) (g : M₁ β†’ Ξ±) :
f = g ∘ e₁₂.symm ↔ f ∘ e₁₂ = g := e₁₂.to_equiv.eq_comp_symm f g
lemma comp_symm_eq {Ξ± : Type*} (f : Mβ‚‚ β†’ Ξ±) (g : M₁ β†’ Ξ±) :
g ∘ e₁₂.symm = f ↔ g = f ∘ e₁₂ := e₁₂.to_equiv.comp_symm_eq f g
lemma eq_symm_comp {Ξ± : Type*} (f : Ξ± β†’ M₁) (g : Ξ± β†’ Mβ‚‚) :
f = e₁₂.symm ∘ g ↔ e₁₂ ∘ f = g := e₁₂.to_equiv.eq_symm_comp f g
lemma symm_comp_eq {Ξ± : Type*} (f : Ξ± β†’ M₁) (g : Ξ± β†’ Mβ‚‚) :
e₁₂.symm ∘ g = f ↔ g = e₁₂ ∘ f := e₁₂.to_equiv.symm_comp_eq f g
variables [ring_hom_comp_triple σ₂₁ σ₁₃ σ₂₃] [ring_hom_comp_triple σ₃₁ σ₁₂ σ₃₂]
include module_M₃
lemma eq_comp_to_linear_map_symm (f : Mβ‚‚ β†’β‚›β‚—[σ₂₃] M₃) (g : M₁ β†’β‚›β‚—[σ₁₃] M₃) :
f = g.comp e₁₂.symm.to_linear_map ↔ f.comp e₁₂.to_linear_map = g :=
begin
split; intro H; ext,
{ simp [H, e₁₂.to_equiv.eq_comp_symm f g] },
{ simp [←H, ←e₁₂.to_equiv.eq_comp_symm f g] }
end
lemma comp_to_linear_map_symm_eq (f : Mβ‚‚ β†’β‚›β‚—[σ₂₃] M₃) (g : M₁ β†’β‚›β‚—[σ₁₃] M₃) :
g.comp e₁₂.symm.to_linear_map = f ↔ g = f.comp e₁₂.to_linear_map :=
begin
split; intro H; ext,
{ simp [←H, ←e₁₂.to_equiv.comp_symm_eq f g] },
{ simp [H, e₁₂.to_equiv.comp_symm_eq f g] }
end
lemma eq_to_linear_map_symm_comp (f : M₃ β†’β‚›β‚—[σ₃₁] M₁) (g : M₃ β†’β‚›β‚—[σ₃₂] Mβ‚‚) :
f = e₁₂.symm.to_linear_map.comp g ↔ e₁₂.to_linear_map.comp f = g :=
begin
split; intro H; ext,
{ simp [H, e₁₂.to_equiv.eq_symm_comp f g] },
{ simp [←H, ←e₁₂.to_equiv.eq_symm_comp f g] }
end
lemma to_linear_map_symm_comp_eq (f : M₃ β†’β‚›β‚—[σ₃₁] M₁) (g : M₃ β†’β‚›β‚—[σ₃₂] Mβ‚‚) :
e₁₂.symm.to_linear_map.comp g = f ↔ g = e₁₂.to_linear_map.comp f :=
begin
split; intro H; ext,
{ simp [←H, ←e₁₂.to_equiv.symm_comp_eq f g] },
{ simp [H, e₁₂.to_equiv.symm_comp_eq f g] }
end
omit module_M₃
@[simp] lemma refl_symm [module R M] : (refl R M).symm = linear_equiv.refl R M := rfl
@[simp] lemma self_trans_symm [module R M] [module R Mβ‚‚] (f : M ≃ₗ[R] Mβ‚‚) :
f.trans f.symm = linear_equiv.refl R M :=
by { ext x, simp }
@[simp] lemma symm_trans_self [module R M] [module R Mβ‚‚] (f : M ≃ₗ[R] Mβ‚‚) :
f.symm.trans f = linear_equiv.refl R Mβ‚‚ :=
by { ext x, simp }
@[simp, norm_cast] lemma refl_to_linear_map [module R M] :
(linear_equiv.refl R M : M β†’β‚—[R] M) = linear_map.id :=
rfl
@[simp, norm_cast]
lemma comp_coe [module R M] [module R Mβ‚‚] [module R M₃] (f : M ≃ₗ[R] Mβ‚‚)
(f' : Mβ‚‚ ≃ₗ[R] M₃) : (f' : Mβ‚‚ β†’β‚—[R] M₃).comp (f : M β†’β‚—[R] Mβ‚‚) = (f.trans f' : M ≃ₗ[R] M₃) :=
rfl
@[simp] lemma mk_coe (h₁ hβ‚‚ f h₃ hβ‚„) :
(linear_equiv.mk e h₁ hβ‚‚ f h₃ hβ‚„ : M ≃ₛₗ[Οƒ] Mβ‚‚) = e := ext $ Ξ» _, rfl
protected theorem map_add (a b : M) : e (a + b) = e a + e b := map_add e a b
protected theorem map_zero : e 0 = 0 := map_zero e
-- TODO: `simp` isn't picking up `map_smulβ‚›β‚—` for `linear_equiv`s without specifying `map_smulβ‚›β‚— f`
@[simp] protected theorem map_smulβ‚›β‚— (c : R) (x : M) : e (c β€’ x) = (Οƒ c) β€’ e x := e.map_smul' c x
include module_N₁ module_Nβ‚‚
theorem map_smul (e : N₁ ≃ₗ[R₁] Nβ‚‚) (c : R₁) (x : N₁) :
e (c β€’ x) = c β€’ e x := map_smulβ‚›β‚— e c x
omit module_N₁ module_Nβ‚‚
@[simp] lemma map_sum {s : finset ΞΉ} (u : ΞΉ β†’ M) : e (βˆ‘ i in s, u i) = βˆ‘ i in s, e (u i) :=
e.to_linear_map.map_sum
@[simp] theorem map_eq_zero_iff {x : M} : e x = 0 ↔ x = 0 :=
e.to_add_equiv.map_eq_zero_iff
theorem map_ne_zero_iff {x : M} : e x β‰  0 ↔ x β‰  0 :=
e.to_add_equiv.map_ne_zero_iff
include module_M module_S_Mβ‚‚ re₁ reβ‚‚
@[simp] theorem symm_symm (e : M ≃ₛₗ[Οƒ] Mβ‚‚): e.symm.symm = e :=
by { cases e, refl }
omit module_M module_S_Mβ‚‚ re₁ reβ‚‚
lemma symm_bijective [module R M] [module S Mβ‚‚] [ring_hom_inv_pair Οƒ' Οƒ]
[ring_hom_inv_pair Οƒ Οƒ'] : function.bijective (symm : (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’ (Mβ‚‚ ≃ₛₗ[Οƒ'] M)) :=
equiv.bijective ⟨(symm : (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’
(Mβ‚‚ ≃ₛₗ[Οƒ'] M)), (symm : (Mβ‚‚ ≃ₛₗ[Οƒ'] M) β†’ (M ≃ₛₗ[Οƒ] Mβ‚‚)), symm_symm, symm_symm⟩
@[simp] lemma mk_coe' (f h₁ hβ‚‚ h₃ hβ‚„) : (linear_equiv.mk f h₁ hβ‚‚ ⇑e h₃ hβ‚„ :
Mβ‚‚ ≃ₛₗ[Οƒ'] M) = e.symm :=
symm_bijective.injective $ ext $ Ξ» x, rfl
@[simp] theorem symm_mk (f h₁ hβ‚‚ h₃ hβ‚„) :
(⟨e, h₁, hβ‚‚, f, h₃, hβ‚„βŸ© : M ≃ₛₗ[Οƒ] Mβ‚‚).symm =
{ to_fun := f, inv_fun := e,
..(⟨e, h₁, hβ‚‚, f, h₃, hβ‚„βŸ© : M ≃ₛₗ[Οƒ] Mβ‚‚).symm } := rfl
@[simp] lemma coe_symm_mk [module R M] [module R Mβ‚‚]
{to_fun inv_fun map_add map_smul left_inv right_inv} :
⇑((⟨to_fun, map_add, map_smul, inv_fun, left_inv, right_inv⟩ : M ≃ₗ[R] Mβ‚‚).symm) = inv_fun :=
rfl
protected lemma bijective : function.bijective e := e.to_equiv.bijective
protected lemma injective : function.injective e := e.to_equiv.injective
protected lemma surjective : function.surjective e := e.to_equiv.surjective
protected lemma image_eq_preimage (s : set M) : e '' s = e.symm ⁻¹' s :=
e.to_equiv.image_eq_preimage s
protected lemma image_symm_eq_preimage (s : set Mβ‚‚) : e.symm '' s = e ⁻¹' s :=
e.to_equiv.symm.image_eq_preimage s
end
/-- Interpret a `ring_equiv` `f` as an `f`-semilinear equiv. -/
@[simps]
def _root_.ring_equiv.to_semilinear_equiv (f : R ≃+* S) :
by haveI := ring_hom_inv_pair.of_ring_equiv f;
haveI := ring_hom_inv_pair.symm (↑f : R β†’+* S) (f.symm : S β†’+* R);
exact (R ≃ₛₗ[(↑f : R β†’+* S)] S) :=
by exact
{ to_fun := f,
map_smul' := f.map_mul,
.. f}
variables [semiring R₁] [semiring Rβ‚‚] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid Mβ‚‚]
/-- An involutive linear map is a linear equivalence. -/
def of_involutive {Οƒ Οƒ' : R β†’+* R} [ring_hom_inv_pair Οƒ Οƒ'] [ring_hom_inv_pair Οƒ' Οƒ]
{module_M : module R M} (f : M β†’β‚›β‚—[Οƒ] M) (hf : involutive f) :
M ≃ₛₗ[Οƒ] M :=
{ .. f, .. hf.to_perm f }
@[simp] lemma coe_of_involutive {Οƒ Οƒ' : R β†’+* R} [ring_hom_inv_pair Οƒ Οƒ']
[ring_hom_inv_pair Οƒ' Οƒ] {module_M : module R M} (f : M β†’β‚›β‚—[Οƒ] M) (hf : involutive f) :
⇑(of_involutive f hf) = f :=
rfl
section restrict_scalars
variables (R) [module R M] [module R Mβ‚‚] [module S M] [module S Mβ‚‚]
[linear_map.compatible_smul M Mβ‚‚ R S]
/-- If `M` and `Mβ‚‚` are both `R`-semimodules and `S`-semimodules and `R`-semimodule structures
are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear
equivalence from `M` to `Mβ‚‚` is also an `R`-linear equivalence.
See also `linear_map.restrict_scalars`. -/
@[simps]
def restrict_scalars (f : M ≃ₗ[S] Mβ‚‚) : M ≃ₗ[R] Mβ‚‚ :=
{ to_fun := f,
inv_fun := f.symm,
left_inv := f.left_inv,
right_inv := f.right_inv,
.. f.to_linear_map.restrict_scalars R }
lemma restrict_scalars_injective :
function.injective (restrict_scalars R : (M ≃ₗ[S] Mβ‚‚) β†’ (M ≃ₗ[R] Mβ‚‚)) :=
Ξ» f g h, ext (linear_equiv.congr_fun h : _)
@[simp]
lemma restrict_scalars_inj (f g : M ≃ₗ[S] Mβ‚‚) :
f.restrict_scalars R = g.restrict_scalars R ↔ f = g :=
(restrict_scalars_injective R).eq_iff
end restrict_scalars
section automorphisms
variables [module R M]
instance automorphism_group : group (M ≃ₗ[R] M) :=
{ mul := Ξ» f g, g.trans f,
one := linear_equiv.refl R M,
inv := Ξ» f, f.symm,
mul_assoc := Ξ» f g h, rfl,
mul_one := Ξ» f, ext $ Ξ» x, rfl,
one_mul := Ξ» f, ext $ Ξ» x, rfl,
mul_left_inv := Ξ» f, ext $ f.left_inv }
/-- Restriction from `R`-linear automorphisms of `M` to `R`-linear endomorphisms of `M`,
promoted to a monoid hom. -/
@[simps]
def automorphism_group.to_linear_map_monoid_hom : (M ≃ₗ[R] M) β†’* (M β†’β‚—[R] M) :=
{ to_fun := coe,
map_one' := rfl,
map_mul' := Ξ» _ _, rfl }
/-- The tautological action by `M ≃ₗ[R] M` on `M`.
This generalizes `function.End.apply_mul_action`. -/
instance apply_distrib_mul_action : distrib_mul_action (M ≃ₗ[R] M) M :=
{ smul := ($),
smul_zero := linear_equiv.map_zero,
smul_add := linear_equiv.map_add,
one_smul := Ξ» _, rfl,
mul_smul := Ξ» _ _ _, rfl }
@[simp] protected lemma smul_def (f : M ≃ₗ[R] M) (a : M) :
f β€’ a = f a := rfl
/-- `linear_equiv.apply_distrib_mul_action` is faithful. -/
instance apply_has_faithful_smul : has_faithful_smul (M ≃ₗ[R] M) M :=
⟨λ _ _, linear_equiv.ext⟩
instance apply_smul_comm_class : smul_comm_class R (M ≃ₗ[R] M) M :=
{ smul_comm := Ξ» r e m, (e.map_smul r m).symm }
instance apply_smul_comm_class' : smul_comm_class (M ≃ₗ[R] M) R M :=
{ smul_comm := linear_equiv.map_smul }
end automorphisms
end add_comm_monoid
end linear_equiv
namespace module
/-- `g : R ≃+* S` is `R`-linear when the module structure on `S` is `module.comp_hom S g` . -/
@[simps]
def comp_hom.to_linear_equiv {R S : Type*} [semiring R] [semiring S] (g : R ≃+* S) :
(by haveI := comp_hom S (↑g : R β†’+* S); exact (R ≃ₗ[R] S)) :=
by exact
{ to_fun := (g : R β†’ S),
inv_fun := (g.symm : S β†’ R),
map_smul' := g.map_mul,
..g }
end module
namespace distrib_mul_action
variables (R M) [semiring R] [add_comm_monoid M] [module R M]
variables [group S] [distrib_mul_action S M] [smul_comm_class S R M]
/-- Each element of the group defines a linear equivalence.
This is a stronger version of `distrib_mul_action.to_add_equiv`. -/
@[simps]
def to_linear_equiv (s : S) : M ≃ₗ[R] M :=
{ ..to_add_equiv M s,
..to_linear_map R M s }
/-- Each element of the group defines a module automorphism.
This is a stronger version of `distrib_mul_action.to_add_aut`. -/
@[simps]
def to_module_aut : S β†’* M ≃ₗ[R] M :=
{ to_fun := to_linear_equiv R M,
map_one' := linear_equiv.ext $ one_smul _,
map_mul' := Ξ» a b, linear_equiv.ext $ mul_smul _ _ }
end distrib_mul_action
namespace add_equiv
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [add_comm_monoid Mβ‚‚] [add_comm_monoid M₃]
variables [module R M] [module R Mβ‚‚]
variable (e : M ≃+ Mβ‚‚)
/-- An additive equivalence whose underlying function preserves `smul` is a linear equivalence. -/
def to_linear_equiv (h : βˆ€ (c : R) x, e (c β€’ x) = c β€’ e x) : M ≃ₗ[R] Mβ‚‚ :=
{ map_smul' := h, .. e, }
@[simp] lemma coe_to_linear_equiv (h : βˆ€ (c : R) x, e (c β€’ x) = c β€’ e x) :
⇑(e.to_linear_equiv h) = e :=
rfl
@[simp] lemma coe_to_linear_equiv_symm (h : βˆ€ (c : R) x, e (c β€’ x) = c β€’ e x) :
⇑(e.to_linear_equiv h).symm = e.symm :=
rfl
/-- An additive equivalence between commutative additive monoids is a linear equivalence between
β„•-modules -/
def to_nat_linear_equiv : M ≃ₗ[β„•] Mβ‚‚ :=
e.to_linear_equiv $ Ξ» c a, by { erw e.to_add_monoid_hom.map_nsmul, refl }
@[simp] lemma coe_to_nat_linear_equiv :
⇑(e.to_nat_linear_equiv) = e := rfl
@[simp] lemma to_nat_linear_equiv_to_add_equiv :
e.to_nat_linear_equiv.to_add_equiv = e := by { ext, refl }
@[simp] lemma _root_.linear_equiv.to_add_equiv_to_nat_linear_equiv
(e : M ≃ₗ[β„•] Mβ‚‚) : e.to_add_equiv.to_nat_linear_equiv = e := fun_like.coe_injective rfl
@[simp] lemma to_nat_linear_equiv_symm :
(e.to_nat_linear_equiv).symm = e.symm.to_nat_linear_equiv := rfl
@[simp] lemma to_nat_linear_equiv_refl :
((add_equiv.refl M).to_nat_linear_equiv) = linear_equiv.refl β„• M := rfl
@[simp] lemma to_nat_linear_equiv_trans (eβ‚‚ : Mβ‚‚ ≃+ M₃) :
(e.to_nat_linear_equiv).trans (eβ‚‚.to_nat_linear_equiv) = (e.trans eβ‚‚).to_nat_linear_equiv := rfl
end add_comm_monoid
section add_comm_group
variables [add_comm_group M] [add_comm_group Mβ‚‚] [add_comm_group M₃]
variable (e : M ≃+ Mβ‚‚)
/-- An additive equivalence between commutative additive groups is a linear
equivalence between β„€-modules -/
def to_int_linear_equiv : M ≃ₗ[β„€] Mβ‚‚ :=
e.to_linear_equiv $ Ξ» c a, e.to_add_monoid_hom.map_zsmul a c
@[simp] lemma coe_to_int_linear_equiv :
⇑(e.to_int_linear_equiv) = e := rfl
@[simp] lemma to_int_linear_equiv_to_add_equiv :
e.to_int_linear_equiv.to_add_equiv = e := by { ext, refl }
@[simp] lemma _root_.linear_equiv.to_add_equiv_to_int_linear_equiv
(e : M ≃ₗ[β„€] Mβ‚‚) : e.to_add_equiv.to_int_linear_equiv = e := fun_like.coe_injective rfl
@[simp] lemma to_int_linear_equiv_symm :
(e.to_int_linear_equiv).symm = e.symm.to_int_linear_equiv := rfl
@[simp] lemma to_int_linear_equiv_refl :
((add_equiv.refl M).to_int_linear_equiv) = linear_equiv.refl β„€ M := rfl
@[simp] lemma to_int_linear_equiv_trans (eβ‚‚ : Mβ‚‚ ≃+ M₃) :
(e.to_int_linear_equiv).trans (eβ‚‚.to_int_linear_equiv) = (e.trans eβ‚‚).to_int_linear_equiv :=
rfl
end add_comm_group
end add_equiv