Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Pierre-Alexandre Bazin | |
-/ | |
import algebra.module.torsion | |
import ring_theory.dedekind_domain.ideal | |
/-! | |
# Modules over a Dedekind domain | |
Over a Dedekind domain, a `I`-torsion module is the internal direct sum of its `p i ^ e i`-torsion | |
submodules, where `I = ∏ i, p i ^ e i` is its unique decomposition in prime ideals. | |
Therefore, as any finitely generated torsion module is `I`-torsion for some `I`, it is an internal | |
direct sum of its `p i ^ e i`-torsion submodules for some prime ideals `p i` and numbers `e i`. | |
-/ | |
universes u v | |
open_locale big_operators | |
variables {R : Type u} [comm_ring R] [is_domain R] {M : Type v} [add_comm_group M] [module R M] | |
open_locale direct_sum | |
namespace submodule | |
variables [is_dedekind_domain R] | |
open unique_factorization_monoid | |
/--Over a Dedekind domain, a `I`-torsion module is the internal direct sum of its `p i ^ e i`- | |
torsion submodules, where `I = ∏ i, p i ^ e i` is its unique decomposition in prime ideals.-/ | |
lemma is_internal_prime_power_torsion_of_is_torsion_by_ideal {I : ideal R} (hI : I ≠ ⊥) | |
(hM : module.is_torsion_by_set R M I) : | |
∃ (P : finset $ ideal R) [decidable_eq P] [∀ p ∈ P, prime p] (e : P → ℕ), | |
by exactI direct_sum.is_internal (λ p : P, torsion_by_set R M (p ^ e p : ideal R)) := | |
begin | |
classical, | |
let P := factors I, | |
have prime_of_mem := λ p (hp : p ∈ P.to_finset), prime_of_factor p (multiset.mem_to_finset.mp hp), | |
refine ⟨P.to_finset, infer_instance, prime_of_mem, λ i, P.count i, _⟩, | |
apply @torsion_by_set_is_internal _ _ _ _ _ _ _ _ (λ p, p ^ P.count p) _, | |
{ convert hM, | |
rw [← finset.inf_eq_infi, is_dedekind_domain.inf_prime_pow_eq_prod, | |
← finset.prod_multiset_count, ← associated_iff_eq], | |
{ exact factors_prod hI }, | |
{ exact prime_of_mem }, { exact λ _ _ _ _ ij, ij } }, | |
{ intros p hp q hq pq, dsimp, | |
rw irreducible_pow_sup, | |
{ suffices : (normalized_factors _).count p = 0, | |
{ rw [this, zero_min, pow_zero, ideal.one_eq_top] }, | |
{ rw [multiset.count_eq_zero, normalized_factors_of_irreducible_pow | |
(prime_of_mem q hq).irreducible, multiset.mem_repeat], | |
exact λ H, pq $ H.2.trans $ normalize_eq q } }, | |
{ rw ← ideal.zero_eq_bot, apply pow_ne_zero, exact (prime_of_mem q hq).ne_zero }, | |
{ exact (prime_of_mem p hp).irreducible } } | |
end | |
/--A finitely generated torsion module over a Dedekind domain is an internal direct sum of its | |
`p i ^ e i`-torsion submodules for some prime ideals `p i` and numbers `e i`.-/ | |
theorem is_internal_prime_power_torsion [module.finite R M] (hM : module.is_torsion R M) : | |
∃ (P : finset $ ideal R) [decidable_eq P] [∀ p ∈ P, prime p] (e : P → ℕ), | |
by exactI direct_sum.is_internal (λ p : P, torsion_by_set R M (p ^ e p : ideal R)) := | |
begin | |
obtain ⟨I, hI, hM'⟩ := is_torsion_by_ideal_of_finite_of_is_torsion hM, | |
refine is_internal_prime_power_torsion_of_is_torsion_by_ideal _ hM', | |
rw set.ne_empty_iff_nonempty at hI, rw submodule.ne_bot_iff, | |
obtain ⟨x, H, hx⟩ := hI, exact ⟨x, H, non_zero_divisors.ne_zero hx⟩ | |
end | |
end submodule | |