/- Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pierre-Alexandre Bazin -/ import algebra.module.torsion import ring_theory.dedekind_domain.ideal /-! # Modules over a Dedekind domain Over a Dedekind domain, a `I`-torsion module is the internal direct sum of its `p i ^ e i`-torsion submodules, where `I = ∏ i, p i ^ e i` is its unique decomposition in prime ideals. Therefore, as any finitely generated torsion module is `I`-torsion for some `I`, it is an internal direct sum of its `p i ^ e i`-torsion submodules for some prime ideals `p i` and numbers `e i`. -/ universes u v open_locale big_operators variables {R : Type u} [comm_ring R] [is_domain R] {M : Type v} [add_comm_group M] [module R M] open_locale direct_sum namespace submodule variables [is_dedekind_domain R] open unique_factorization_monoid /--Over a Dedekind domain, a `I`-torsion module is the internal direct sum of its `p i ^ e i`- torsion submodules, where `I = ∏ i, p i ^ e i` is its unique decomposition in prime ideals.-/ lemma is_internal_prime_power_torsion_of_is_torsion_by_ideal {I : ideal R} (hI : I ≠ ⊥) (hM : module.is_torsion_by_set R M I) : ∃ (P : finset $ ideal R) [decidable_eq P] [∀ p ∈ P, prime p] (e : P → ℕ), by exactI direct_sum.is_internal (λ p : P, torsion_by_set R M (p ^ e p : ideal R)) := begin classical, let P := factors I, have prime_of_mem := λ p (hp : p ∈ P.to_finset), prime_of_factor p (multiset.mem_to_finset.mp hp), refine ⟨P.to_finset, infer_instance, prime_of_mem, λ i, P.count i, _⟩, apply @torsion_by_set_is_internal _ _ _ _ _ _ _ _ (λ p, p ^ P.count p) _, { convert hM, rw [← finset.inf_eq_infi, is_dedekind_domain.inf_prime_pow_eq_prod, ← finset.prod_multiset_count, ← associated_iff_eq], { exact factors_prod hI }, { exact prime_of_mem }, { exact λ _ _ _ _ ij, ij } }, { intros p hp q hq pq, dsimp, rw irreducible_pow_sup, { suffices : (normalized_factors _).count p = 0, { rw [this, zero_min, pow_zero, ideal.one_eq_top] }, { rw [multiset.count_eq_zero, normalized_factors_of_irreducible_pow (prime_of_mem q hq).irreducible, multiset.mem_repeat], exact λ H, pq $ H.2.trans $ normalize_eq q } }, { rw ← ideal.zero_eq_bot, apply pow_ne_zero, exact (prime_of_mem q hq).ne_zero }, { exact (prime_of_mem p hp).irreducible } } end /--A finitely generated torsion module over a Dedekind domain is an internal direct sum of its `p i ^ e i`-torsion submodules for some prime ideals `p i` and numbers `e i`.-/ theorem is_internal_prime_power_torsion [module.finite R M] (hM : module.is_torsion R M) : ∃ (P : finset $ ideal R) [decidable_eq P] [∀ p ∈ P, prime p] (e : P → ℕ), by exactI direct_sum.is_internal (λ p : P, torsion_by_set R M (p ^ e p : ideal R)) := begin obtain ⟨I, hI, hM'⟩ := is_torsion_by_ideal_of_finite_of_is_torsion hM, refine is_internal_prime_power_torsion_of_is_torsion_by_ideal _ hM', rw set.ne_empty_iff_nonempty at hI, rw submodule.ne_bot_iff, obtain ⟨x, H, hx⟩ := hI, exact ⟨x, H, non_zero_divisors.ne_zero hx⟩ end end submodule