Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import data.int.cast.defs | |
import algebra.hom.equiv | |
/-! | |
# `ulift` instances for groups and monoids | |
This file defines instances for group, monoid, semigroup and related structures on `ulift` types. | |
(Recall `ulift α` is just a "copy" of a type `α` in a higher universe.) | |
We use `tactic.pi_instance_derive_field`, even though it wasn't intended for this purpose, | |
which seems to work fine. | |
We also provide `ulift.mul_equiv : ulift R ≃* R` (and its additive analogue). | |
-/ | |
universes u v | |
variables {α : Type u} {β : Type*} {x y : ulift.{v} α} | |
namespace ulift | |
@[to_additive] instance has_one [has_one α] : has_one (ulift α) := ⟨⟨1⟩⟩ | |
@[simp, to_additive] lemma one_down [has_one α] : (1 : ulift α).down = 1 := rfl | |
@[to_additive] instance has_mul [has_mul α] : has_mul (ulift α) := ⟨λ f g, ⟨f.down * g.down⟩⟩ | |
@[simp, to_additive] lemma mul_down [has_mul α] : (x * y).down = x.down * y.down := rfl | |
@[to_additive] instance has_div [has_div α] : has_div (ulift α) := ⟨λ f g, ⟨f.down / g.down⟩⟩ | |
@[simp, to_additive] lemma div_down [has_div α] : (x / y).down = x.down / y.down := rfl | |
@[to_additive] instance has_inv [has_inv α] : has_inv (ulift α) := ⟨λ f, ⟨f.down⁻¹⟩⟩ | |
@[simp, to_additive] lemma inv_down [has_inv α] : x⁻¹.down = (x.down)⁻¹ := rfl | |
@[to_additive] | |
instance has_smul [has_smul α β] : has_smul α (ulift β) := ⟨λ n x, up (n • x.down)⟩ | |
@[simp, to_additive] | |
lemma smul_down [has_smul α β] (a : α) (b : ulift.{v} β) : (a • b).down = a • b.down := rfl | |
@[to_additive has_smul, to_additive_reorder 1] | |
instance has_pow [has_pow α β] : has_pow (ulift α) β := ⟨λ x n, up (x.down ^ n)⟩ | |
@[simp, to_additive smul_down, to_additive_reorder 1] | |
lemma pow_down [has_pow α β] (a : ulift.{v} α) (b : β) : (a ^ b).down = a.down ^ b := rfl | |
/-- | |
The multiplicative equivalence between `ulift α` and `α`. | |
-/ | |
@[to_additive "The additive equivalence between `ulift α` and `α`."] | |
def _root_.mul_equiv.ulift [has_mul α] : ulift α ≃* α := | |
{ map_mul' := λ x y, rfl, | |
.. equiv.ulift } | |
@[to_additive] | |
instance semigroup [semigroup α] : semigroup (ulift α) := | |
mul_equiv.ulift.injective.semigroup _ $ λ x y, rfl | |
@[to_additive] | |
instance comm_semigroup [comm_semigroup α] : comm_semigroup (ulift α) := | |
equiv.ulift.injective.comm_semigroup _ $ λ x y, rfl | |
@[to_additive] | |
instance mul_one_class [mul_one_class α] : mul_one_class (ulift α) := | |
equiv.ulift.injective.mul_one_class _ rfl $ λ x y, rfl | |
instance mul_zero_one_class [mul_zero_one_class α] : mul_zero_one_class (ulift α) := | |
equiv.ulift.injective.mul_zero_one_class _ rfl rfl $ λ x y, rfl | |
@[to_additive] | |
instance monoid [monoid α] : monoid (ulift α) := | |
equiv.ulift.injective.monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
instance add_monoid_with_one [add_monoid_with_one α] : add_monoid_with_one (ulift α) := | |
{ nat_cast := λ n, ⟨n⟩, | |
nat_cast_zero := congr_arg ulift.up nat.cast_zero, | |
nat_cast_succ := λ n, congr_arg ulift.up (nat.cast_succ _), | |
.. ulift.has_one, .. ulift.add_monoid } | |
@[simp] lemma nat_cast_down [add_monoid_with_one α] (n : ℕ) : | |
(n : ulift α).down = n := | |
rfl | |
@[to_additive] | |
instance comm_monoid [comm_monoid α] : comm_monoid (ulift α) := | |
equiv.ulift.injective.comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
instance monoid_with_zero [monoid_with_zero α] : monoid_with_zero (ulift α) := | |
equiv.ulift.injective.monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl) | |
instance comm_monoid_with_zero [comm_monoid_with_zero α] : comm_monoid_with_zero (ulift α) := | |
equiv.ulift.injective.comm_monoid_with_zero _ rfl rfl (λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive] | |
instance div_inv_monoid [div_inv_monoid α] : div_inv_monoid (ulift α) := | |
equiv.ulift.injective.div_inv_monoid _ rfl (λ _ _, rfl) (λ _, rfl) | |
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive] | |
instance group [group α] : group (ulift α) := | |
equiv.ulift.injective.group _ rfl (λ _ _, rfl) (λ _, rfl) | |
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) | |
instance add_group_with_one [add_group_with_one α] : add_group_with_one (ulift α) := | |
{ int_cast := λ n, ⟨n⟩, | |
int_cast_of_nat := λ n, congr_arg ulift.up (int.cast_of_nat _), | |
int_cast_neg_succ_of_nat := λ n, congr_arg ulift.up (int.cast_neg_succ_of_nat _), | |
.. ulift.add_monoid_with_one, .. ulift.add_group } | |
@[simp] lemma int_cast_down [add_group_with_one α] (n : ℤ) : | |
(n : ulift α).down = n := | |
rfl | |
@[to_additive] | |
instance comm_group [comm_group α] : comm_group (ulift α) := | |
equiv.ulift.injective.comm_group _ rfl (λ _ _, rfl) (λ _, rfl) | |
(λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) | |
instance group_with_zero [group_with_zero α] : group_with_zero (ulift α) := | |
equiv.ulift.injective.group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) | |
(λ _ _, rfl) | |
instance comm_group_with_zero [comm_group_with_zero α] : comm_group_with_zero (ulift α) := | |
equiv.ulift.injective.comm_group_with_zero _ rfl rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) | |
(λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive add_left_cancel_semigroup] | |
instance left_cancel_semigroup [left_cancel_semigroup α] : | |
left_cancel_semigroup (ulift α) := | |
equiv.ulift.injective.left_cancel_semigroup _ (λ _ _, rfl) | |
@[to_additive add_right_cancel_semigroup] | |
instance right_cancel_semigroup [right_cancel_semigroup α] : | |
right_cancel_semigroup (ulift α) := | |
equiv.ulift.injective.right_cancel_semigroup _ (λ _ _, rfl) | |
@[to_additive add_left_cancel_monoid] | |
instance left_cancel_monoid [left_cancel_monoid α] : | |
left_cancel_monoid (ulift α) := | |
equiv.ulift.injective.left_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive add_right_cancel_monoid] | |
instance right_cancel_monoid [right_cancel_monoid α] : | |
right_cancel_monoid (ulift α) := | |
equiv.ulift.injective.right_cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive add_cancel_monoid] | |
instance cancel_monoid [cancel_monoid α] : | |
cancel_monoid (ulift α) := | |
equiv.ulift.injective.cancel_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
@[to_additive add_cancel_monoid] | |
instance cancel_comm_monoid [cancel_comm_monoid α] : | |
cancel_comm_monoid (ulift α) := | |
equiv.ulift.injective.cancel_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) | |
instance nontrivial [nontrivial α] : nontrivial (ulift α) := | |
equiv.ulift.symm.injective.nontrivial | |
-- TODO we don't do `ordered_cancel_comm_monoid` or `ordered_comm_group` | |
-- We'd need to add instances for `ulift` in `order.basic`. | |
end ulift | |