Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.68 kB
/-
Copyright (c) 2019 Neil Strickland. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Neil Strickland, Yury Kudryashov
-/
import algebra.group.semiconj
/-!
# Commuting pairs of elements in monoids
We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h :
commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and
`hc : commute a c`. Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right
(hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`.
Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like
`rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`.
This file defines only a few operations (`mul_left`, `inv_right`, etc). Other operations
(`pow_right`, field inverse etc) are in the files that define corresponding notions.
## Implementation details
Most of the proofs come from the properties of `semiconj_by`.
-/
variables {G : Type*}
/-- Two elements commute if `a * b = b * a`. -/
@[to_additive add_commute "Two elements additively commute if `a + b = b + a`"]
def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b
namespace commute
section has_mul
variables {S : Type*} [has_mul S]
/-- Equality behind `commute a b`; useful for rewriting. -/
@[to_additive "Equality behind `add_commute a b`; useful for rewriting."]
protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h
/-- Any element commutes with itself. -/
@[refl, simp, to_additive "Any element commutes with itself."]
protected lemma refl (a : S) : commute a a := eq.refl (a * a)
/-- If `a` commutes with `b`, then `b` commutes with `a`. -/
@[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."]
protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h
@[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h
@[to_additive]
protected theorem symm_iff {a b : S} : commute a b ↔ commute b a :=
⟨commute.symm, commute.symm⟩
end has_mul
section semigroup
variables {S : Type*} [semigroup S] {a b c : S}
/-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/
@[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."]
lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac
/-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/
@[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."]
lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc
@[to_additive] protected lemma right_comm (h : commute b c) (a : S) :
a * b * c = a * c * b :=
by simp only [mul_assoc, h.eq]
@[to_additive] protected lemma left_comm (h : commute a b) (c) :
a * (b * c) = b * (a * c) :=
by simp only [← mul_assoc, h.eq]
end semigroup
@[to_additive]
protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b
section mul_one_class
variables {M : Type*} [mul_one_class M]
@[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a
@[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a
end mul_one_class
section monoid
variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ}
@[simp, to_additive]
theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n
@[simp, to_additive]
theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm
@[simp, to_additive]
theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) :=
(h.pow_left m).pow_right n
@[simp, to_additive]
theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n
@[simp, to_additive]
theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n
@[simp, to_additive]
theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) :=
(commute.refl a).pow_pow m n
@[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a :=
(pow_succ a n).trans (self_pow _ _)
@[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ :=
semiconj_by.units_inv_right
@[simp, to_additive] theorem units_inv_right_iff :
commute a ↑u⁻¹ ↔ commute a u :=
semiconj_by.units_inv_right_iff
@[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a :=
semiconj_by.units_inv_symm_left
@[simp, to_additive]
theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a :=
semiconj_by.units_inv_symm_left_iff
@[to_additive]
theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe
@[to_additive]
theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe
@[simp, to_additive]
theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff
@[to_additive] lemma is_unit_mul_iff (h : commute a b) :
is_unit (a * b) ↔ is_unit a ∧ is_unit b :=
begin
refine ⟨_, λ H, H.1.mul H.2⟩,
rintro ⟨u, hu⟩,
have : b * ↑u⁻¹ * a = 1,
{ have : commute a u := hu.symm ▸ (commute.refl _).mul_right h,
rw [← this.units_inv_right.right_comm, ← h.eq, ← hu, u.mul_inv] },
split,
{ refine ⟨⟨a, b * ↑u⁻¹, _, this⟩, rfl⟩,
rw [← mul_assoc, ← hu, u.mul_inv] },
{ rw mul_assoc at this,
refine ⟨⟨b, ↑u⁻¹ * a, this, _⟩, rfl⟩,
rw [mul_assoc, ← hu, u.inv_mul] }
end
@[simp, to_additive] lemma _root_.is_unit_mul_self_iff :
is_unit (a * a) ↔ is_unit a :=
(commute.refl a).is_unit_mul_iff.trans (and_self _)
end monoid
section division_monoid
variables [division_monoid G] {a b : G}
@[to_additive] lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm
@[simp, to_additive]
lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff
end division_monoid
section group
variables [group G] {a b : G}
@[to_additive]
theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right
@[simp, to_additive]
theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff
@[to_additive] theorem inv_left : commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left
@[simp, to_additive]
theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff
@[to_additive]
protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b :=
by rw [h.inv_left.eq, inv_mul_cancel_right]
@[to_additive]
theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b :=
by rw [← mul_assoc, h.inv_mul_cancel]
@[to_additive]
protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b :=
by rw [h.eq, mul_inv_cancel_right]
@[to_additive]
theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b :=
by rw [← mul_assoc, h.mul_inv_cancel]
end group
end commute
section comm_group
variables [comm_group G] (a b : G)
@[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b :=
(commute.all a b).mul_inv_cancel
@[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b :=
(commute.all a b).mul_inv_cancel_assoc
@[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b :=
(commute.all a b).inv_mul_cancel
@[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b :=
(commute.all a b).inv_mul_cancel_assoc
end comm_group