Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Neil Strickland. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Neil Strickland, Yury Kudryashov | |
-/ | |
import algebra.group.semiconj | |
/-! | |
# Commuting pairs of elements in monoids | |
We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h : | |
commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and | |
`hc : commute a c`. Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right | |
(hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`. | |
Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like | |
`rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`. | |
This file defines only a few operations (`mul_left`, `inv_right`, etc). Other operations | |
(`pow_right`, field inverse etc) are in the files that define corresponding notions. | |
## Implementation details | |
Most of the proofs come from the properties of `semiconj_by`. | |
-/ | |
variables {G : Type*} | |
/-- Two elements commute if `a * b = b * a`. -/ | |
@[to_additive add_commute "Two elements additively commute if `a + b = b + a`"] | |
def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b | |
namespace commute | |
section has_mul | |
variables {S : Type*} [has_mul S] | |
/-- Equality behind `commute a b`; useful for rewriting. -/ | |
@[to_additive "Equality behind `add_commute a b`; useful for rewriting."] | |
protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h | |
/-- Any element commutes with itself. -/ | |
@[refl, simp, to_additive "Any element commutes with itself."] | |
protected lemma refl (a : S) : commute a a := eq.refl (a * a) | |
/-- If `a` commutes with `b`, then `b` commutes with `a`. -/ | |
@[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."] | |
protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h | |
@[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h | |
@[to_additive] | |
protected theorem symm_iff {a b : S} : commute a b ↔ commute b a := | |
⟨commute.symm, commute.symm⟩ | |
end has_mul | |
section semigroup | |
variables {S : Type*} [semigroup S] {a b c : S} | |
/-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/ | |
@[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."] | |
lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac | |
/-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/ | |
@[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."] | |
lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc | |
@[to_additive] protected lemma right_comm (h : commute b c) (a : S) : | |
a * b * c = a * c * b := | |
by simp only [mul_assoc, h.eq] | |
@[to_additive] protected lemma left_comm (h : commute a b) (c) : | |
a * (b * c) = b * (a * c) := | |
by simp only [← mul_assoc, h.eq] | |
end semigroup | |
@[to_additive] | |
protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b | |
section mul_one_class | |
variables {M : Type*} [mul_one_class M] | |
@[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a | |
@[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a | |
end mul_one_class | |
section monoid | |
variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ} | |
@[simp, to_additive] | |
theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n | |
@[simp, to_additive] | |
theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm | |
@[simp, to_additive] | |
theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) := | |
(h.pow_left m).pow_right n | |
@[simp, to_additive] | |
theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n | |
@[simp, to_additive] | |
theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n | |
@[simp, to_additive] | |
theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) := | |
(commute.refl a).pow_pow m n | |
@[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a := | |
(pow_succ a n).trans (self_pow _ _) | |
@[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ := | |
semiconj_by.units_inv_right | |
@[simp, to_additive] theorem units_inv_right_iff : | |
commute a ↑u⁻¹ ↔ commute a u := | |
semiconj_by.units_inv_right_iff | |
@[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a := | |
semiconj_by.units_inv_symm_left | |
@[simp, to_additive] | |
theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a := | |
semiconj_by.units_inv_symm_left_iff | |
@[to_additive] | |
theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe | |
@[to_additive] | |
theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe | |
@[simp, to_additive] | |
theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff | |
@[to_additive] lemma is_unit_mul_iff (h : commute a b) : | |
is_unit (a * b) ↔ is_unit a ∧ is_unit b := | |
begin | |
refine ⟨_, λ H, H.1.mul H.2⟩, | |
rintro ⟨u, hu⟩, | |
have : b * ↑u⁻¹ * a = 1, | |
{ have : commute a u := hu.symm ▸ (commute.refl _).mul_right h, | |
rw [← this.units_inv_right.right_comm, ← h.eq, ← hu, u.mul_inv] }, | |
split, | |
{ refine ⟨⟨a, b * ↑u⁻¹, _, this⟩, rfl⟩, | |
rw [← mul_assoc, ← hu, u.mul_inv] }, | |
{ rw mul_assoc at this, | |
refine ⟨⟨b, ↑u⁻¹ * a, this, _⟩, rfl⟩, | |
rw [mul_assoc, ← hu, u.inv_mul] } | |
end | |
@[simp, to_additive] lemma _root_.is_unit_mul_self_iff : | |
is_unit (a * a) ↔ is_unit a := | |
(commute.refl a).is_unit_mul_iff.trans (and_self _) | |
end monoid | |
section division_monoid | |
variables [division_monoid G] {a b : G} | |
@[to_additive] lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm | |
@[simp, to_additive] | |
lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff | |
end division_monoid | |
section group | |
variables [group G] {a b : G} | |
@[to_additive] | |
theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right | |
@[simp, to_additive] | |
theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff | |
@[to_additive] theorem inv_left : commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left | |
@[simp, to_additive] | |
theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff | |
@[to_additive] | |
protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b := | |
by rw [h.inv_left.eq, inv_mul_cancel_right] | |
@[to_additive] | |
theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b := | |
by rw [← mul_assoc, h.inv_mul_cancel] | |
@[to_additive] | |
protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b := | |
by rw [h.eq, mul_inv_cancel_right] | |
@[to_additive] | |
theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b := | |
by rw [← mul_assoc, h.mul_inv_cancel] | |
end group | |
end commute | |
section comm_group | |
variables [comm_group G] (a b : G) | |
@[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b := | |
(commute.all a b).mul_inv_cancel | |
@[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b := | |
(commute.all a b).mul_inv_cancel_assoc | |
@[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b := | |
(commute.all a b).inv_mul_cancel | |
@[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b := | |
(commute.all a b).inv_mul_cancel_assoc | |
end comm_group | |