Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21.6 kB
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Simon Hudon, Mario Carneiro
-/
import algebra.group.defs
import data.bracket
import logic.function.basic
/-!
# Basic lemmas about semigroups, monoids, and groups
This file lists various basic lemmas about semigroups, monoids, and groups. Most proofs are
one-liners from the corresponding axioms. For the definitions of semigroups, monoids and groups, see
`algebra/group/defs.lean`.
-/
open function
universe u
variables {α G : Type*}
section associative
variables (f : α → α → α) [is_associative α f] (x y : α)
/--
Composing two associative operations of `f : α → α → α` on the left
is equal to an associative operation on the left.
-/
lemma comp_assoc_left : (f x) ∘ (f y) = (f (f x y)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }
/--
Composing two associative operations of `f : α → α → α` on the right
is equal to an associative operation on the right.
-/
lemma comp_assoc_right : (λ z, f z x) ∘ (λ z, f z y) = (λ z, f z (f y x)) :=
by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] }
end associative
section semigroup
/--
Composing two multiplications on the left by `y` then `x`
is equal to a multiplication on the left by `x * y`.
-/
@[simp, to_additive
"Composing two additions on the left by `y` then `x`
is equal to a addition on the left by `x + y`."]
lemma comp_mul_left [semigroup α] (x y : α) :
((*) x) ∘ ((*) y) = ((*) (x * y)) :=
comp_assoc_left _ _ _
/--
Composing two multiplications on the right by `y` and `x`
is equal to a multiplication on the right by `y * x`.
-/
@[simp, to_additive
"Composing two additions on the right by `y` and `x`
is equal to a addition on the right by `y + x`."]
lemma comp_mul_right [semigroup α] (x y : α) :
(* x) ∘ (* y) = (* (y * x)) :=
comp_assoc_right _ _ _
end semigroup
section mul_one_class
variables {M : Type u} [mul_one_class M]
@[to_additive]
lemma ite_mul_one {P : Prop} [decidable P] {a b : M} :
ite P (a * b) 1 = ite P a 1 * ite P b 1 :=
by { by_cases h : P; simp [h], }
@[to_additive]
lemma ite_one_mul {P : Prop} [decidable P] {a b : M} :
ite P 1 (a * b) = ite P 1 a * ite P 1 b :=
by { by_cases h : P; simp [h], }
@[to_additive]
lemma eq_one_iff_eq_one_of_mul_eq_one {a b : M} (h : a * b = 1) : a = 1b = 1 :=
by split; { rintro rfl, simpa using h }
@[to_additive]
lemma one_mul_eq_id : ((*) (1 : M)) = id := funext one_mul
@[to_additive]
lemma mul_one_eq_id : (* (1 : M)) = id := funext mul_one
end mul_one_class
section comm_semigroup
variables [comm_semigroup G]
@[no_rsimp, to_additive]
lemma mul_left_comm : ∀ a b c : G, a * (b * c) = b * (a * c) :=
left_comm has_mul.mul mul_comm mul_assoc
@[to_additive]
lemma mul_right_comm : ∀ a b c : G, a * b * c = a * c * b :=
right_comm has_mul.mul mul_comm mul_assoc
@[to_additive]
theorem mul_mul_mul_comm (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
by simp only [mul_left_comm, mul_assoc]
@[to_additive]
lemma mul_rotate (a b c : G) : a * b * c = b * c * a :=
by simp only [mul_left_comm, mul_comm]
@[to_additive]
lemma mul_rotate' (a b c : G) : a * (b * c) = b * (c * a) :=
by simp only [mul_left_comm, mul_comm]
end comm_semigroup
section add_comm_semigroup
variables {M : Type u} [add_comm_semigroup M]
lemma bit0_add (a b : M) : bit0 (a + b) = bit0 a + bit0 b :=
add_add_add_comm _ _ _ _
lemma bit1_add [has_one M] (a b : M) : bit1 (a + b) = bit0 a + bit1 b :=
(congr_arg (+ (1 : M)) $ bit0_add a b : _).trans (add_assoc _ _ _)
lemma bit1_add' [has_one M] (a b : M) : bit1 (a + b) = bit1 a + bit0 b :=
by rw [add_comm, bit1_add, add_comm]
end add_comm_semigroup
local attribute [simp] mul_assoc sub_eq_add_neg
section add_monoid
variables {M : Type u} [add_monoid M] {a b c : M}
@[simp] lemma bit0_zero : bit0 (0 : M) = 0 := add_zero _
@[simp] lemma bit1_zero [has_one M] : bit1 (0 : M) = 1 :=
by rw [bit1, bit0_zero, zero_add]
end add_monoid
section comm_monoid
variables {M : Type u} [comm_monoid M] {x y z : M}
@[to_additive] lemma inv_unique (hy : x * y = 1) (hz : x * z = 1) : y = z :=
left_inv_eq_right_inv (trans (mul_comm _ _) hy) hz
end comm_monoid
section left_cancel_monoid
variables {M : Type u} [left_cancel_monoid M] {a b : M}
@[simp, to_additive] lemma mul_right_eq_self : a * b = ab = 1 :=
calc a * b = aa * b = a * 1 : by rw mul_one
... ↔ b = 1 : mul_left_cancel_iff
@[simp, to_additive] lemma self_eq_mul_right : a = a * bb = 1 :=
eq_comm.trans mul_right_eq_self
end left_cancel_monoid
section right_cancel_monoid
variables {M : Type u} [right_cancel_monoid M] {a b : M}
@[simp, to_additive] lemma mul_left_eq_self : a * b = ba = 1 :=
calc a * b = ba * b = 1 * b : by rw one_mul
... ↔ a = 1 : mul_right_cancel_iff
@[simp, to_additive] lemma self_eq_mul_left : b = a * ba = 1 :=
eq_comm.trans mul_left_eq_self
end right_cancel_monoid
section has_involutive_inv
variables [has_involutive_inv G] {a b : G}
@[simp, to_additive]
lemma inv_involutive : function.involutive (has_inv.inv : G → G) := inv_inv
@[simp, to_additive]
lemma inv_surjective : function.surjective (has_inv.inv : G → G) :=
inv_involutive.surjective
@[to_additive]
lemma inv_injective : function.injective (has_inv.inv : G → G) :=
inv_involutive.injective
@[simp, to_additive] theorem inv_inj {a b : G} : a⁻¹ = b⁻¹ ↔ a = b := inv_injective.eq_iff
@[to_additive]
lemma eq_inv_of_eq_inv (h : a = b⁻¹) : b = a⁻¹ :=
by simp [h]
@[to_additive]
theorem eq_inv_iff_eq_inv : a = b⁻¹ ↔ b = a⁻¹ :=
⟨eq_inv_of_eq_inv, eq_inv_of_eq_inv⟩
@[to_additive]
theorem inv_eq_iff_inv_eq : a⁻¹ = bb⁻¹ = a :=
eq_comm.trans $ eq_inv_iff_eq_inv.trans eq_comm
variables (G)
@[simp, to_additive] lemma inv_comp_inv : has_inv.inv ∘ has_inv.inv = @id G :=
inv_involutive.comp_self
@[to_additive] lemma left_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv
@[to_additive] lemma right_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv
end has_involutive_inv
section div_inv_monoid
variables [div_inv_monoid G] {a b c : G}
@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma inv_eq_one_div (x : G) :
x⁻¹ = 1 / x :=
by rw [div_eq_mul_inv, one_mul]
@[to_additive]
lemma mul_one_div (x y : G) :
x * (1 / y) = x / y :=
by rw [div_eq_mul_inv, one_mul, div_eq_mul_inv]
@[to_additive]
lemma mul_div_assoc (a b c : G) : a * b / c = a * (b / c) :=
by rw [div_eq_mul_inv, div_eq_mul_inv, mul_assoc _ _ _]
@[to_additive, field_simps] -- The attributes are out of order on purpose
lemma mul_div_assoc' (a b c : G) : a * (b / c) = (a * b) / c :=
(mul_div_assoc _ _ _).symm
@[simp, to_additive] lemma one_div (a : G) : 1 / a = a⁻¹ :=
(inv_eq_one_div a).symm
@[to_additive] lemma mul_div (a b c : G) : a * (b / c) = a * b / c :=
by simp only [mul_assoc, div_eq_mul_inv]
@[to_additive] lemma div_eq_mul_one_div (a b : G) : a / b = a * (1 / b) :=
by rw [div_eq_mul_inv, one_div]
end div_inv_monoid
section division_monoid
variables [division_monoid α] {a b c : α}
local attribute [simp] mul_assoc div_eq_mul_inv
@[to_additive] lemma inv_eq_of_mul_eq_one_left (h : a * b = 1) : b⁻¹ = a :=
by rw [←inv_eq_of_mul_eq_one_right h, inv_inv]
@[to_additive] lemma eq_inv_of_mul_eq_one_left (h : a * b = 1) : a = b⁻¹ :=
(inv_eq_of_mul_eq_one_left h).symm
@[to_additive] lemma eq_inv_of_mul_eq_one_right (h : a * b = 1) : b = a⁻¹ :=
(inv_eq_of_mul_eq_one_right h).symm
@[to_additive] lemma eq_one_div_of_mul_eq_one_left (h : b * a = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_left h, one_div]
@[to_additive] lemma eq_one_div_of_mul_eq_one_right (h : a * b = 1) : b = 1 / a :=
by rw [eq_inv_of_mul_eq_one_right h, one_div]
@[to_additive] lemma eq_of_div_eq_one (h : a / b = 1) : a = b :=
inv_injective $ inv_eq_of_mul_eq_one_right $ by rwa ←div_eq_mul_inv
@[to_additive] lemma div_ne_one_of_ne : a ≠ b → a / b ≠ 1 := mt eq_of_div_eq_one
variables (a b c)
@[to_additive] lemma one_div_mul_one_div_rev : (1 / a) * (1 / b) = 1 / (b * a) := by simp
@[to_additive] lemma inv_div_left : a⁻¹ / b = (b * a)⁻¹ := by simp
@[simp, to_additive] lemma inv_div : (a / b)⁻¹ = b / a := by simp
@[simp, to_additive] lemma one_div_div : 1 / (a / b) = b / a := by simp
@[simp, to_additive] lemma inv_one : (1 : α)⁻¹ = 1 :=
by simpa only [one_div, inv_inv] using (inv_div (1 : α) 1).symm
@[simp, to_additive] lemma div_one : a / 1 = a := by simp
@[to_additive] lemma one_div_one : (1 : α) / 1 = 1 := div_one _
@[to_additive] lemma one_div_one_div : 1 / (1 / a) = a := by simp
variables {a b c}
@[simp, to_additive] lemma inv_eq_one : a⁻¹ = 1 ↔ a = 1 := inv_injective.eq_iff' inv_one
@[simp, to_additive] lemma one_eq_inv : 1 = a⁻¹ ↔ a = 1 := eq_comm.trans inv_eq_one
@[to_additive] lemma inv_ne_one : a⁻¹ ≠ 1a1 := inv_eq_one.not
@[to_additive] lemma eq_of_one_div_eq_one_div (h : 1 / a = 1 / b) : a = b :=
by rw [←one_div_one_div a, h, one_div_one_div]
variables (a b c)
-- The attributes are out of order on purpose
@[to_additive, field_simps] lemma div_div_eq_mul_div : a / (b / c) = a * c / b := by simp
@[simp, to_additive] lemma div_inv_eq_mul : a / b⁻¹ = a * b := by simp
@[to_additive] lemma div_mul_eq_div_div_swap : a / (b * c) = a / c / b :=
by simp only [mul_assoc, mul_inv_rev, div_eq_mul_inv]
end division_monoid
lemma bit0_neg [subtraction_monoid α] (a : α) : bit0 (-a) = -bit0 a := (neg_add_rev _ _).symm
section division_comm_monoid
variables [division_comm_monoid α] (a b c d : α)
local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv
@[to_additive neg_add] lemma mul_inv : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by simp
@[to_additive] lemma inv_div' : (a / b)⁻¹ = a⁻¹ / b⁻¹ := by simp
@[to_additive] lemma div_eq_inv_mul : a / b = b⁻¹ * a := by simp
@[to_additive] lemma inv_mul_eq_div : a⁻¹ * b = b / a := by simp
@[to_additive] lemma inv_mul' : (a * b)⁻¹ = a⁻¹ / b := by simp
@[simp, to_additive] lemma inv_div_inv : (a⁻¹ / b⁻¹) = b / a := by simp
@[to_additive] lemma inv_inv_div_inv : (a⁻¹ / b⁻¹)⁻¹ = a / b := by simp
@[to_additive] lemma one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) := by simp
@[to_additive] lemma div_right_comm : a / b / c = a / c / b := by simp
@[to_additive, field_simps] lemma div_div : a / b / c = a / (b * c) := by simp
@[to_additive] lemma div_mul : a / b * c = a / (b / c) := by simp
@[to_additive] lemma mul_div_left_comm : a * (b / c) = b * (a / c) := by simp
@[to_additive] lemma mul_div_right_comm : a * b / c = a / c * b := by simp
@[to_additive] lemma div_mul_eq_div_div : a / (b * c) = a / b / c := by simp
@[to_additive, field_simps] lemma div_mul_eq_mul_div : a / b * c = a * c / b := by simp
@[to_additive] lemma mul_comm_div : a / b * c = a * (c / b) := by simp
@[to_additive] lemma div_mul_comm : a / b * c = c / b * a := by simp
@[to_additive] lemma div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) := by simp
@[to_additive] lemma div_div_div_eq : a / b / (c / d) = a * d / (b * c) := by simp
@[to_additive] lemma div_div_div_comm : a / b / (c / d) = a / c / (b / d) := by simp
@[to_additive] lemma div_mul_div_comm : a / b * (c / d) = a * c / (b * d) := by simp
@[to_additive] lemma mul_div_mul_comm : a * b / (c * d) = a / c * (b / d) := by simp
end division_comm_monoid
section group
variables [group G] {a b c d : G}
@[simp, to_additive] theorem div_eq_inv_self : a / b = b⁻¹ ↔ a = 1 :=
by rw [div_eq_mul_inv, mul_left_eq_self]
@[to_additive]
theorem mul_left_surjective (a : G) : function.surjective ((*) a) :=
λ x, ⟨a⁻¹ * x, mul_inv_cancel_left a x
@[to_additive]
theorem mul_right_surjective (a : G) : function.surjective (λ x, x * a) :=
λ x, ⟨x * a⁻¹, inv_mul_cancel_right x a
@[to_additive]
lemma eq_mul_inv_of_mul_eq (h : a * c = b) : a = b * c⁻¹ :=
by simp [h.symm]
@[to_additive]
lemma eq_inv_mul_of_mul_eq (h : b * a = c) : a = b⁻¹ * c :=
by simp [h.symm]
@[to_additive]
lemma inv_mul_eq_of_eq_mul (h : b = a * c) : a⁻¹ * b = c :=
by simp [h]
@[to_additive]
lemma mul_inv_eq_of_eq_mul (h : a = c * b) : a * b⁻¹ = c :=
by simp [h]
@[to_additive]
lemma eq_mul_of_mul_inv_eq (h : a * c⁻¹ = b) : a = b * c :=
by simp [h.symm]
@[to_additive]
lemma eq_mul_of_inv_mul_eq (h : b⁻¹ * a = c) : a = b * c :=
by simp [h.symm, mul_inv_cancel_left]
@[to_additive]
lemma mul_eq_of_eq_inv_mul (h : b = a⁻¹ * c) : a * b = c :=
by rw [h, mul_inv_cancel_left]
@[to_additive]
lemma mul_eq_of_eq_mul_inv (h : a = c * b⁻¹) : a * b = c :=
by simp [h]
@[to_additive]
theorem mul_eq_one_iff_eq_inv : a * b = 1a = b⁻¹ :=
⟨eq_inv_of_mul_eq_one_left, λ h, by rw [h, mul_left_inv]⟩
@[to_additive]
theorem mul_eq_one_iff_inv_eq : a * b = 1a⁻¹ = b :=
by rw [mul_eq_one_iff_eq_inv, eq_inv_iff_eq_inv, eq_comm]
@[to_additive]
theorem eq_inv_iff_mul_eq_one : a = b⁻¹ ↔ a * b = 1 :=
mul_eq_one_iff_eq_inv.symm
@[to_additive]
theorem inv_eq_iff_mul_eq_one : a⁻¹ = ba * b = 1 :=
mul_eq_one_iff_inv_eq.symm
@[to_additive]
theorem eq_mul_inv_iff_mul_eq : a = b * c⁻¹ ↔ a * c = b :=
⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩
@[to_additive]
theorem eq_inv_mul_iff_mul_eq : a = b⁻¹ * cb * a = c :=
⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩
@[to_additive]
theorem inv_mul_eq_iff_eq_mul : a⁻¹ * b = cb = a * c :=
⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩
@[to_additive]
theorem mul_inv_eq_iff_eq_mul : a * b⁻¹ = ca = c * b :=
⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩
@[to_additive]
theorem mul_inv_eq_one : a * b⁻¹ = 1a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inv]
@[to_additive]
theorem inv_mul_eq_one : a⁻¹ * b = 1a = b :=
by rw [mul_eq_one_iff_eq_inv, inv_inj]
@[to_additive]
lemma div_left_injective : function.injective (λ a, a / b) :=
by simpa only [div_eq_mul_inv] using λ a a' h, mul_left_injective (b⁻¹) h
@[to_additive]
lemma div_right_injective : function.injective (λ a, b / a) :=
by simpa only [div_eq_mul_inv] using λ a a' h, inv_injective (mul_right_injective b h)
@[simp, to_additive sub_add_cancel]
lemma div_mul_cancel' (a b : G) : a / b * b = a :=
by rw [div_eq_mul_inv, inv_mul_cancel_right a b]
@[simp, to_additive sub_self]
lemma div_self' (a : G) : a / a = 1 :=
by rw [div_eq_mul_inv, mul_right_inv a]
@[simp, to_additive add_sub_cancel]
lemma mul_div_cancel'' (a b : G) : a * b / b = a :=
by rw [div_eq_mul_inv, mul_inv_cancel_right a b]
@[simp, to_additive]
lemma mul_div_mul_right_eq_div (a b c : G) : (a * c) / (b * c) = a / b :=
by rw [div_mul_eq_div_div_swap]; simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel'']
@[to_additive eq_sub_of_add_eq]
lemma eq_div_of_mul_eq' (h : a * c = b) : a = b / c :=
by simp [← h]
@[to_additive sub_eq_of_eq_add]
lemma div_eq_of_eq_mul'' (h : a = c * b) : a / b = c :=
by simp [h]
@[to_additive]
lemma eq_mul_of_div_eq (h : a / c = b) : a = b * c :=
by simp [← h]
@[to_additive]
lemma mul_eq_of_eq_div (h : a = c / b) : a * b = c :=
by simp [h]
@[simp, to_additive]
lemma div_right_inj : a / b = a / c ↔ b = c :=
div_right_injective.eq_iff
@[simp, to_additive]
lemma div_left_inj : b / a = c / a ↔ b = c :=
by { rw [div_eq_mul_inv, div_eq_mul_inv], exact mul_left_inj _ }
@[simp, to_additive sub_add_sub_cancel]
lemma div_mul_div_cancel' (a b c : G) : (a / b) * (b / c) = a / c :=
by rw [← mul_div_assoc, div_mul_cancel']
@[simp, to_additive sub_sub_sub_cancel_right]
lemma div_div_div_cancel_right' (a b c : G) : (a / c) / (b / c) = a / b :=
by rw [← inv_div c b, div_inv_eq_mul, div_mul_div_cancel']
@[to_additive]
theorem div_eq_one : a / b = 1 ↔ a = b :=
⟨eq_of_div_eq_one, λ h, by rw [h, div_self']⟩
alias div_eq_one ↔ _ div_eq_one_of_eq
alias sub_eq_zero ↔ _ sub_eq_zero_of_eq
@[to_additive]
theorem div_ne_one : a / b1ab :=
not_congr div_eq_one
@[simp, to_additive]
theorem div_eq_self : a / b = ab = 1 :=
by rw [div_eq_mul_inv, mul_right_eq_self, inv_eq_one]
@[to_additive eq_sub_iff_add_eq]
theorem eq_div_iff_mul_eq' : a = b / c ↔ a * c = b :=
by rw [div_eq_mul_inv, eq_mul_inv_iff_mul_eq]
@[to_additive]
theorem div_eq_iff_eq_mul : a / b = c ↔ a = c * b :=
by rw [div_eq_mul_inv, mul_inv_eq_iff_eq_mul]
@[to_additive]
theorem eq_iff_eq_of_div_eq_div (H : a / b = c / d) : a = b ↔ c = d :=
by rw [← div_eq_one, H, div_eq_one]
@[to_additive]
theorem left_inverse_div_mul_left (c : G) : function.left_inverse (λ x, x / c) (λ x, x * c) :=
assume x, mul_div_cancel'' x c
@[to_additive]
theorem left_inverse_mul_left_div (c : G) : function.left_inverse (λ x, x * c) (λ x, x / c) :=
assume x, div_mul_cancel' x c
@[to_additive]
theorem left_inverse_mul_right_inv_mul (c : G) :
function.left_inverse (λ x, c * x) (λ x, c⁻¹ * x) :=
assume x, mul_inv_cancel_left c x
@[to_additive]
theorem left_inverse_inv_mul_mul_right (c : G) :
function.left_inverse (λ x, c⁻¹ * x) (λ x, c * x) :=
assume x, inv_mul_cancel_left c x
@[to_additive]
lemma exists_npow_eq_one_of_zpow_eq_one {n : ℤ} (hn : n ≠ 0) {x : G} (h : x ^ n = 1) :
∃ n : ℕ, 0 < n ∧ x ^ n = 1 :=
begin
cases n with n n,
{ rw zpow_of_nat at h,
refine ⟨n, nat.pos_of_ne_zero (λ n0, hn _), h⟩, rw n0, refl },
{ rw [zpow_neg_succ_of_nat, inv_eq_one] at h,
refine ⟨n + 1, n.succ_pos, h⟩ }
end
end group
section comm_group
variables [comm_group G] {a b c d : G}
local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv
@[to_additive]
lemma div_eq_of_eq_mul' {a b c : G} (h : a = b * c) : a / b = c :=
by rw [h, div_eq_mul_inv, mul_comm, inv_mul_cancel_left]
@[simp, to_additive]
lemma mul_div_mul_left_eq_div (a b c : G) : (c * a) / (c * b) = a / b :=
by simp
@[to_additive eq_sub_of_add_eq']
lemma eq_div_of_mul_eq'' (h : c * a = b) : a = b / c :=
by simp [h.symm]
@[to_additive]
lemma eq_mul_of_div_eq' (h : a / b = c) : a = b * c :=
by simp [h.symm]
@[to_additive]
lemma mul_eq_of_eq_div' (h : b = c / a) : a * b = c :=
begin simp [h], rw [mul_comm c, mul_inv_cancel_left] end
@[to_additive sub_sub_self]
lemma div_div_self' (a b : G) : a / (a / b) = b :=
by simpa using mul_inv_cancel_left a b
@[to_additive]
lemma div_eq_div_mul_div (a b c : G) : a / b = c / b * (a / c) := by simp [mul_left_comm c]
@[simp, to_additive]
lemma div_div_cancel (a b : G) : a / (a / b) = b := div_div_self' a b
@[simp, to_additive]
lemma div_div_cancel_left (a b : G) : a / b / a = b⁻¹ := by simp
@[to_additive eq_sub_iff_add_eq']
lemma eq_div_iff_mul_eq'' : a = b / c ↔ c * a = b :=
by rw [eq_div_iff_mul_eq', mul_comm]
@[to_additive]
lemma div_eq_iff_eq_mul' : a / b = c ↔ a = b * c :=
by rw [div_eq_iff_eq_mul, mul_comm]
@[simp, to_additive add_sub_cancel']
lemma mul_div_cancel''' (a b : G) : a * b / a = b := by rw [div_eq_inv_mul, inv_mul_cancel_left]
@[simp, to_additive]
lemma mul_div_cancel'_right (a b : G) : a * (b / a) = b :=
by rw [← mul_div_assoc, mul_div_cancel''']
@[simp, to_additive sub_add_cancel']
lemma div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ :=
by rw [← inv_div, mul_div_cancel''']
-- This lemma is in the `simp` set under the name `mul_inv_cancel_comm_assoc`,
-- along with the additive version `add_neg_cancel_comm_assoc`,
-- defined in `algebra/group/commute`
@[to_additive]
lemma mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b :=
by rw [← div_eq_mul_inv, mul_div_cancel'_right a b]
@[simp, to_additive]
lemma mul_mul_div_cancel (a b c : G) : (a * c) * (b / c) = a * b :=
by rw [mul_assoc, mul_div_cancel'_right]
@[simp, to_additive]
lemma div_mul_mul_cancel (a b c : G) : (a / c) * (b * c) = a * b :=
by rw [mul_left_comm, div_mul_cancel', mul_comm]
@[simp, to_additive sub_add_sub_cancel']
lemma div_mul_div_cancel'' (a b c : G) : (a / b) * (c / a) = c / b :=
by rw mul_comm; apply div_mul_div_cancel'
@[simp, to_additive]
lemma mul_div_div_cancel (a b c : G) : (a * b) / (a / c) = b * c :=
by rw [← div_mul, mul_div_cancel''']
@[simp, to_additive]
lemma div_div_div_cancel_left (a b c : G) : (c / a) / (c / b) = b / a :=
by rw [← inv_div b c, div_inv_eq_mul, mul_comm, div_mul_div_cancel']
@[to_additive] lemma div_eq_div_iff_mul_eq_mul : a / b = c / d ↔ a * d = c * b :=
begin
rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, eq_comm, div_eq_iff_eq_mul'],
simp only [mul_comm, eq_comm]
end
@[to_additive] lemma div_eq_div_iff_div_eq_div : a / b = c / d ↔ a / c = b / d :=
by rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, div_eq_iff_eq_mul', mul_div_assoc]
end comm_group
section subtraction_comm_monoid
variables {M : Type u} [subtraction_comm_monoid M]
lemma bit0_sub (a b : M) : bit0 (a - b) = bit0 a - bit0 b :=
sub_add_sub_comm _ _ _ _
lemma bit1_sub [has_one M] (a b : M) : bit1 (a - b) = bit1 a - bit0 b :=
(congr_arg (+ (1 : M)) $ bit0_sub a b : _).trans $ sub_add_eq_add_sub _ _ _
end subtraction_comm_monoid
section commutator
/-- The commutator of two elements `g₁` and `g₂`. -/
instance commutator_element {G : Type*} [group G] : has_bracket G G :=
⟨λ g₁ g₂, g₁ * g₂ * g₁⁻¹ * g₂⁻¹⟩
lemma commutator_element_def {G : Type*} [group G] (g₁ g₂ : G) :
⁅g₁, g₂⁆ = g₁ * g₂ * g₁⁻¹ * g₂⁻¹ := rfl
end commutator