Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.47 kB
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import algebra.direct_sum.module
import data.finsupp.to_dfinsupp
/-!
# Results on direct sums and finitely supported functions.
1. The linear equivalence between finitely supported functions `ι →₀ M` and
the direct sum of copies of `M` indexed by `ι`.
-/
universes u v w
noncomputable theory
open_locale direct_sum
open linear_map submodule
variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M]
section finsupp_lequiv_direct_sum
variables (R M) (ι : Type*) [decidable_eq ι]
/-- The finitely supported functions `ι →₀ M` are in linear equivalence with the direct sum of
copies of M indexed by ι. -/
def finsupp_lequiv_direct_sum : (ι →₀ M) ≃ₗ[R] ⨁ i : ι, M :=
by haveI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _; exact finsupp_lequiv_dfinsupp R
@[simp] theorem finsupp_lequiv_direct_sum_single (i : ι) (m : M) :
finsupp_lequiv_direct_sum R M ι (finsupp.single i m) = direct_sum.lof R ι _ i m :=
finsupp.to_dfinsupp_single i m
@[simp] theorem finsupp_lequiv_direct_sum_symm_lof (i : ι) (m : M) :
(finsupp_lequiv_direct_sum R M ι).symm (direct_sum.lof R ι _ i m) = finsupp.single i m :=
begin
letI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _,
exact (dfinsupp.to_finsupp_single i m),
end
end finsupp_lequiv_direct_sum