Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl | |
-/ | |
import algebra.direct_sum.module | |
import data.finsupp.to_dfinsupp | |
/-! | |
# Results on direct sums and finitely supported functions. | |
1. The linear equivalence between finitely supported functions `ι →₀ M` and | |
the direct sum of copies of `M` indexed by `ι`. | |
-/ | |
universes u v w | |
noncomputable theory | |
open_locale direct_sum | |
open linear_map submodule | |
variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] | |
section finsupp_lequiv_direct_sum | |
variables (R M) (ι : Type*) [decidable_eq ι] | |
/-- The finitely supported functions `ι →₀ M` are in linear equivalence with the direct sum of | |
copies of M indexed by ι. -/ | |
def finsupp_lequiv_direct_sum : (ι →₀ M) ≃ₗ[R] ⨁ i : ι, M := | |
by haveI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _; exact finsupp_lequiv_dfinsupp R | |
@[simp] theorem finsupp_lequiv_direct_sum_single (i : ι) (m : M) : | |
finsupp_lequiv_direct_sum R M ι (finsupp.single i m) = direct_sum.lof R ι _ i m := | |
finsupp.to_dfinsupp_single i m | |
@[simp] theorem finsupp_lequiv_direct_sum_symm_lof (i : ι) (m : M) : | |
(finsupp_lequiv_direct_sum R M ι).symm (direct_sum.lof R ι _ i m) = finsupp.single i m := | |
begin | |
letI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _, | |
exact (dfinsupp.to_finsupp_single i m), | |
end | |
end finsupp_lequiv_direct_sum | |