/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import algebra.direct_sum.module import data.finsupp.to_dfinsupp /-! # Results on direct sums and finitely supported functions. 1. The linear equivalence between finitely supported functions `ι →₀ M` and the direct sum of copies of `M` indexed by `ι`. -/ universes u v w noncomputable theory open_locale direct_sum open linear_map submodule variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] section finsupp_lequiv_direct_sum variables (R M) (ι : Type*) [decidable_eq ι] /-- The finitely supported functions `ι →₀ M` are in linear equivalence with the direct sum of copies of M indexed by ι. -/ def finsupp_lequiv_direct_sum : (ι →₀ M) ≃ₗ[R] ⨁ i : ι, M := by haveI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _; exact finsupp_lequiv_dfinsupp R @[simp] theorem finsupp_lequiv_direct_sum_single (i : ι) (m : M) : finsupp_lequiv_direct_sum R M ι (finsupp.single i m) = direct_sum.lof R ι _ i m := finsupp.to_dfinsupp_single i m @[simp] theorem finsupp_lequiv_direct_sum_symm_lof (i : ι) (m : M) : (finsupp_lequiv_direct_sum R M ι).symm (direct_sum.lof R ι _ i m) = finsupp.single i m := begin letI : Π m : M, decidable (m ≠ 0) := classical.dec_pred _, exact (dfinsupp.to_finsupp_single i m), end end finsupp_lequiv_direct_sum