Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau | |
-/ | |
import data.dfinsupp.basic | |
import group_theory.submonoid.operations | |
import group_theory.subgroup.basic | |
/-! | |
This file defines the direct sum of abelian groups, indexed by a discrete type. | |
`⨁ i, β i` is the n-ary direct sum `direct_sum`. | |
This notation is in the `direct_sum` locale, accessible after `open_locale direct_sum`. | |
* https://en.wikipedia.org/wiki/Direct_sum | |
-/ | |
open_locale big_operators | |
universes u v w u₁ | |
variables (ι : Type v) [dec_ι : decidable_eq ι] (β : ι → Type w) | |
/-- `direct_sum β` is the direct sum of a family of additive commutative monoids `β i`. | |
Note: `open_locale direct_sum` will enable the notation `⨁ i, β i` for `direct_sum β`. -/ | |
@[derive [add_comm_monoid, inhabited]] | |
def direct_sum [Π i, add_comm_monoid (β i)] : Type* := Π₀ i, β i | |
instance [Π i, add_comm_monoid (β i)] : has_coe_to_fun (direct_sum ι β) (λ _, Π i : ι, β i) := | |
dfinsupp.has_coe_to_fun | |
localized "notation `⨁` binders `, ` r:(scoped f, direct_sum _ f) := r" in direct_sum | |
namespace direct_sum | |
variables {ι} | |
section add_comm_group | |
variables [Π i, add_comm_group (β i)] | |
instance : add_comm_group (direct_sum ι β) := dfinsupp.add_comm_group | |
variables {β} | |
@[simp] lemma sub_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ - g₂) i = g₁ i - g₂ i := rfl | |
end add_comm_group | |
variables [Π i, add_comm_monoid (β i)] | |
@[simp] lemma zero_apply (i : ι) : (0 : ⨁ i, β i) i = 0 := rfl | |
variables {β} | |
@[simp] lemma add_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ + g₂) i = g₁ i + g₂ i := rfl | |
variables (β) | |
include dec_ι | |
/-- `mk β s x` is the element of `⨁ i, β i` that is zero outside `s` | |
and has coefficient `x i` for `i` in `s`. -/ | |
def mk (s : finset ι) : (Π i : (↑s : set ι), β i.1) →+ ⨁ i, β i := | |
{ to_fun := dfinsupp.mk s, | |
map_add' := λ _ _, dfinsupp.mk_add, | |
map_zero' := dfinsupp.mk_zero, } | |
/-- `of i` is the natural inclusion map from `β i` to `⨁ i, β i`. -/ | |
def of (i : ι) : β i →+ ⨁ i, β i := | |
dfinsupp.single_add_hom β i | |
@[simp] lemma of_eq_same (i : ι) (x : β i) : (of _ i x) i = x := | |
dfinsupp.single_eq_same | |
lemma of_eq_of_ne (i j : ι) (x : β i) (h : i ≠ j) : (of _ i x) j = 0 := | |
dfinsupp.single_eq_of_ne h | |
@[simp] lemma support_zero [Π (i : ι) (x : β i), decidable (x ≠ 0)] : | |
(0 : ⨁ i, β i).support = ∅ := dfinsupp.support_zero | |
@[simp] lemma support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)] | |
(i : ι) (x : β i) (h : x ≠ 0) : | |
(of _ i x).support = {i} := dfinsupp.support_single_ne_zero h | |
lemma support_of_subset [Π (i : ι) (x : β i), decidable (x ≠ 0)] {i : ι} {b : β i} : | |
(of _ i b).support ⊆ {i} := dfinsupp.support_single_subset | |
lemma sum_support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)] (x : ⨁ i, β i) : | |
∑ i in x.support, of β i (x i) = x := dfinsupp.sum_single | |
variables {β} | |
theorem mk_injective (s : finset ι) : function.injective (mk β s) := | |
dfinsupp.mk_injective s | |
theorem of_injective (i : ι) : function.injective (of β i) := | |
dfinsupp.single_injective | |
@[elab_as_eliminator] | |
protected theorem induction_on {C : (⨁ i, β i) → Prop} | |
(x : ⨁ i, β i) (H_zero : C 0) | |
(H_basic : ∀ (i : ι) (x : β i), C (of β i x)) | |
(H_plus : ∀ x y, C x → C y → C (x + y)) : C x := | |
begin | |
apply dfinsupp.induction x H_zero, | |
intros i b f h1 h2 ih, | |
solve_by_elim | |
end | |
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`, | |
then they are equal. -/ | |
lemma add_hom_ext {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄ | |
(H : ∀ (i : ι) (y : β i), f (of _ i y) = g (of _ i y)) : f = g := | |
dfinsupp.add_hom_ext H | |
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`, | |
then they are equal. | |
See note [partially-applied ext lemmas]. -/ | |
@[ext] lemma add_hom_ext' {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄ | |
(H : ∀ (i : ι), f.comp (of _ i) = g.comp (of _ i)) : f = g := | |
add_hom_ext $ λ i, add_monoid_hom.congr_fun $ H i | |
variables {γ : Type u₁} [add_comm_monoid γ] | |
section to_add_monoid | |
variables (φ : Π i, β i →+ γ) (ψ : (⨁ i, β i) →+ γ) | |
/-- `to_add_monoid φ` is the natural homomorphism from `⨁ i, β i` to `γ` | |
induced by a family `φ` of homomorphisms `β i → γ`. -/ | |
def to_add_monoid : (⨁ i, β i) →+ γ := | |
(dfinsupp.lift_add_hom φ) | |
@[simp] lemma to_add_monoid_of (i) (x : β i) : to_add_monoid φ (of β i x) = φ i x := | |
dfinsupp.lift_add_hom_apply_single φ i x | |
theorem to_add_monoid.unique (f : ⨁ i, β i) : | |
ψ f = to_add_monoid (λ i, ψ.comp (of β i)) f := | |
by {congr, ext, simp [to_add_monoid, of]} | |
end to_add_monoid | |
section from_add_monoid | |
/-- `from_add_monoid φ` is the natural homomorphism from `γ` to `⨁ i, β i` | |
induced by a family `φ` of homomorphisms `γ → β i`. | |
Note that this is not an isomorphism. Not every homomorphism `γ →+ ⨁ i, β i` arises in this way. -/ | |
def from_add_monoid : (⨁ i, γ →+ β i) →+ (γ →+ ⨁ i, β i) := | |
to_add_monoid $ λ i, add_monoid_hom.comp_hom (of β i) | |
@[simp] lemma from_add_monoid_of (i : ι) (f : γ →+ β i) : | |
from_add_monoid (of _ i f) = (of _ i).comp f := | |
by { rw [from_add_monoid, to_add_monoid_of], refl } | |
lemma from_add_monoid_of_apply (i : ι) (f : γ →+ β i) (x : γ) : | |
from_add_monoid (of _ i f) x = of _ i (f x) := | |
by rw [from_add_monoid_of, add_monoid_hom.coe_comp] | |
end from_add_monoid | |
variables (β) | |
/-- `set_to_set β S T h` is the natural homomorphism `⨁ (i : S), β i → ⨁ (i : T), β i`, | |
where `h : S ⊆ T`. -/ | |
-- TODO: generalize this to remove the assumption `S ⊆ T`. | |
def set_to_set (S T : set ι) (H : S ⊆ T) : | |
(⨁ (i : S), β i) →+ (⨁ (i : T), β i) := | |
to_add_monoid $ λ i, of (λ (i : subtype T), β i) ⟨↑i, H i.prop⟩ | |
variables {β} | |
omit dec_ι | |
/-- A direct sum over an empty type is trivial. -/ | |
instance [is_empty ι] : unique (⨁ i, β i) := dfinsupp.unique | |
/-- The natural equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/ | |
protected def id (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [unique ι] : | |
(⨁ (_ : ι), M) ≃+ M := | |
{ to_fun := direct_sum.to_add_monoid (λ _, add_monoid_hom.id M), | |
inv_fun := of (λ _, M) default, | |
left_inv := λ x, direct_sum.induction_on x | |
(by rw [add_monoid_hom.map_zero, add_monoid_hom.map_zero]) | |
(λ p x, by rw [unique.default_eq p, to_add_monoid_of]; refl) | |
(λ x y ihx ihy, by rw [add_monoid_hom.map_add, add_monoid_hom.map_add, ihx, ihy]), | |
right_inv := λ x, to_add_monoid_of _ _ _, | |
..direct_sum.to_add_monoid (λ _, add_monoid_hom.id M) } | |
section congr_left | |
variables {κ : Type*} | |
/--Reindexing terms of a direct sum.-/ | |
def equiv_congr_left (h : ι ≃ κ) : (⨁ i, β i) ≃+ ⨁ k, β (h.symm k) := | |
{ map_add' := dfinsupp.comap_domain'_add _ _, | |
..dfinsupp.equiv_congr_left h } | |
@[simp] lemma equiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, β i) (k : κ) : | |
equiv_congr_left h f k = f (h.symm k) := dfinsupp.comap_domain'_apply _ _ _ _ | |
end congr_left | |
section option | |
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] | |
include dec_ι | |
/--Isomorphism obtained by separating the term of index `none` of a direct sum over `option ι`.-/ | |
@[simps] noncomputable def add_equiv_prod_direct_sum : (⨁ i, α i) ≃+ α none × ⨁ i, α (some i) := | |
{ map_add' := dfinsupp.equiv_prod_dfinsupp_add, ..dfinsupp.equiv_prod_dfinsupp } | |
end option | |
section sigma | |
variables {α : ι → Type u} {δ : Π i, α i → Type w} [Π i j, add_comm_monoid (δ i j)] | |
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/ | |
noncomputable def sigma_curry : (⨁ (i : Σ i, _), δ i.1 i.2) →+ ⨁ i j, δ i j := | |
{ to_fun := @dfinsupp.sigma_curry _ _ δ _, | |
map_zero' := dfinsupp.sigma_curry_zero, | |
map_add' := λ f g, @dfinsupp.sigma_curry_add _ _ δ _ f g } | |
@[simp] lemma sigma_curry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) : | |
sigma_curry f i j = f ⟨i, j⟩ := @dfinsupp.sigma_curry_apply _ _ δ _ f i j | |
/--The natural map between `⨁ i (j : α i), δ i j` and `Π₀ (i : Σ i, α i), δ i.1 i.2`, inverse of | |
`curry`.-/ | |
noncomputable def sigma_uncurry : (⨁ i j, δ i j) →+ ⨁ (i : Σ i, _), δ i.1 i.2 := | |
{ to_fun := dfinsupp.sigma_uncurry, | |
map_zero' := dfinsupp.sigma_uncurry_zero, | |
map_add' := dfinsupp.sigma_uncurry_add } | |
@[simp] lemma sigma_uncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) : | |
sigma_uncurry f ⟨i, j⟩ = f i j := dfinsupp.sigma_uncurry_apply f i j | |
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/ | |
noncomputable def sigma_curry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃+ ⨁ i j, δ i j := | |
{ ..sigma_curry, ..dfinsupp.sigma_curry_equiv } | |
end sigma | |
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `add_submonoid M` | |
indexed by `ι`. | |
When `S = submodule _ M`, this is available as a `linear_map`, `direct_sum.coe_linear_map`. -/ | |
protected def coe_add_monoid_hom {M S : Type*} [decidable_eq ι] [add_comm_monoid M] | |
[set_like S M] [add_submonoid_class S M] (A : ι → S) : (⨁ i, A i) →+ M := | |
to_add_monoid (λ i, add_submonoid_class.subtype (A i)) | |
@[simp] lemma coe_add_monoid_hom_of {M S : Type*} [decidable_eq ι] [add_comm_monoid M] | |
[set_like S M] [add_submonoid_class S M] (A : ι → S) (i : ι) (x : A i) : | |
direct_sum.coe_add_monoid_hom A (of (λ i, A i) i x) = x := | |
to_add_monoid_of _ _ _ | |
lemma coe_of_apply {M S : Type*} [decidable_eq ι] [add_comm_monoid M] | |
[set_like S M] [add_submonoid_class S M] {A : ι → S} (i j : ι) (x : A i) : | |
(of _ i x j : M) = if i = j then x else 0 := | |
begin | |
obtain rfl | h := decidable.eq_or_ne i j, | |
{ rw [direct_sum.of_eq_same, if_pos rfl], }, | |
{ rw [direct_sum.of_eq_of_ne _ _ _ _ h, if_neg h, add_submonoid_class.coe_zero], }, | |
end | |
/-- The `direct_sum` formed by a collection of additive submonoids (or subgroups, or submodules) of | |
`M` is said to be internal if the canonical map `(⨁ i, A i) →+ M` is bijective. | |
For the alternate statement in terms of independence and spanning, see | |
`direct_sum.subgroup_is_internal_iff_independent_and_supr_eq_top` and | |
`direct_sum.is_internal_submodule_iff_independent_and_supr_eq_top`. -/ | |
def is_internal {M S : Type*} [decidable_eq ι] [add_comm_monoid M] | |
[set_like S M] [add_submonoid_class S M] (A : ι → S) : Prop := | |
function.bijective (direct_sum.coe_add_monoid_hom A) | |
lemma is_internal.add_submonoid_supr_eq_top {M : Type*} [decidable_eq ι] [add_comm_monoid M] | |
(A : ι → add_submonoid M) | |
(h : is_internal A) : supr A = ⊤ := | |
begin | |
rw [add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom, add_monoid_hom.mrange_top_iff_surjective], | |
exact function.bijective.surjective h, | |
end | |
end direct_sum | |