Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import linear_algebra.finite_dimensional | |
import ring_theory.algebraic | |
import data.zmod.basic | |
import data.real.basic | |
import tactic | |
/-! | |
``` | |
____ | |
/ ___|_ __ ___ _ _ _ __ ___ | |
| | _| '__/ _ \| | | | '_ \/ __| | |
| |_| | | | (_) | |_| | |_) \__ \_ | |
\____|_| \___/ \__,_| .__/|___( ) | |
|_| |/ | |
_ __ (_) _ __ __ _ ___ | |
| '__| | | | '_ \ / _` | / __| | |
| | | | | | | | | (_| | \__ \ _ | |
|_| |_| |_| |_| \__, | |___/ ( ) | |
|___/ |/ | |
_ __ _ _ _ | |
__ _ _ __ __| | / _| (_) ___ | | __| | ___ | |
/ _` | | '_ \ / _` | | |_ | | / _ \ | | / _` | / __| | |
| (_| | | | | | | (_| | | _| | | | __/ | | | (_| | \__ \ | |
\__,_| |_| |_| \__,_| |_| |_| \___| |_| \__,_| |___/ | |
``` | |
-/ | |
/-! ## Reminder on updating the exercises | |
These instructions are now available at: | |
https://leanprover-community.github.io/lftcm2020/exercises.html | |
To get a new copy of the exercises, | |
run the following commands in your terminal: | |
``` | |
leanproject get lftcm2020 | |
cp -r lftcm2020/src/exercises_sources/ lftcm2020/src/my_exercises | |
code lftcm2020 | |
``` | |
To update your exercise files, run the following commands: | |
``` | |
cd /path/to/lftcm2020 | |
git pull | |
leanproject get-mathlib-cache | |
``` | |
Donβt forget to copy the updated files to `src/my_exercises`. | |
-/ | |
/-! ## What do we have? | |
Too much to cover in detail in 10 minutes. | |
Take a look at the βGeneral algebraβ section on | |
https://leanprover-community.github.io/mathlib-overview.html | |
All the basic concepts are there: | |
`group`, `ring`, `field`, `module`, etc... | |
Also versions that are compatible with an ordering, like `ordered_ring` | |
And versions that express compatibility with a topology: `topological_group` | |
Finally constructions, like `polynomial R`, or `mv_polynomial Ο R`, | |
or `monoid_algebra K G`, or `β€_[p]`, or `zmod n`, or `localization R S`. | |
-/ | |
/-! ## Morphisms | |
* `X β Y` -- ordinary function | |
* `X β+ Y` -- function respects `0` and `+` | |
* `X β* Y` -- function respects `1` and `*` | |
* `X β+* Y` -- function respects `0`, `1`, `+`, `*` (surprise!) | |
-/ | |
section | |
-- let R and S be rings | |
variables {R S : Type*} [ring R] [ring S] | |
-- let f be a ring homomorphism; now given an term of type R, construct | |
-- a term of type S. | |
example (f : R β+* S) (a : R) : S := f a | |
/- | |
This heavily relies on the βcoercion to functionβ | |
that we have seen a couple of times this week. | |
-/ | |
end | |
/-! ## Where are these things in the library? | |
`algebra/` for basic definitions and properties; βalgebraic hierarchyβ | |
`group_theory/` β« | |
`ring_theory/` β¬ βadvancedβ and βspecialisedβ material | |
`field_theory/` | | |
`number_theory` β | |
`data/` definitions and examples | |
To give an idea: | |
* `algebra/ordered_ring.lean` | |
* `ring_theory/noetherian.lean` | |
* `field_theory/chevalley_warning.lean` | |
* `data/nat/*.lean`, `data/real/*.lean`, `number_theory/padics/*.lean` | |
-/ | |
/-! ## How to find things (search tools) | |
* `library_search` -- it often helps to carve out | |
the exact lemma statement that you are looking for | |
* online documentation: https://leanprover-community.github.io/mathlib_docs/ | |
new search bar under construction | |
* Old-skool: `grep` | |
* Search in VS Code: | |
- `Ctrl - Shift - F` | |
-- don't forget to change settings, to search everywhere | |
-- click the three dots (`β¦`) below the search bar | |
-- disable the blue cogwheel | |
- `Ctrl - P` -- search for filenames | |
- `Ctrl - P`, `#` -- search for lemmas and definitions | |
-/ | |
/-! ## How to find things (autocomplete) | |
Mathlib follows pretty strict naming conventions: | |
``` | |
/-- The binomial theorem-/ | |
theorem add_pow [comm_semiring Ξ±] (x y : Ξ±) (n : β) : | |
(x + y) ^ n = β m in range (n + 1), x ^ m * y ^ (n - m) * choose n m := | |
(commute.all x y).add_pow n | |
``` | |
After a while, you get the hang of this, | |
and you can start guessing names. | |
-/ | |
open_locale big_operators -- nice notation β, β | |
open finset -- `finset.range n` is the finite set `{0,1,..., n-1}` | |
-- Demonstrate autocompletion | |
example (f : β β β) (n : β) : | |
57 + β i in range (n+1), f i = 57 + f n + β i in range n, f i := | |
begin | |
sorry | |
end | |
/-! ## How to find things (jump to definition) | |
Another good strategy for finding useful results about `X`, | |
is to βjump to the definitionβ and scroll through the next 3 screens of lemmas. | |
If you are looking for a basic fact about `X`, you will usually find it there. | |
-/ | |
-- demonstrate βjump to definitionβ | |
#check polynomial.coeff | |
/-! ## Exercise 1 | |
We will warm up with a well-known result: | |
βSubgroups of abelian groups are normal.β | |
Hints for proving this result: | |
* Notice that `normal` is a structure, | |
which you can see by going to the definition. | |
The `constructor` tactic will help you to get started. | |
-/ | |
namespace add_subgroup | |
variables {A : Type*} [add_comm_group A] | |
lemma normal_of_add_comm_group (H : add_subgroup A) : normal H := | |
begin | |
-- sorry | |
constructor, | |
intros x hx y, | |
simpa, | |
-- sorry | |
end | |
end add_subgroup | |
/-! ## Exercise 2 | |
The following exercise will show the classical fact: | |
βFinite field extensions are algebraic.β | |
Hints for proving this result: | |
* Look up the definition of `finite_dimensional`. | |
* Search the library for useful lemmas about `is_algebraic` and `is_integral`. | |
* You can have a look at `is_noetherian.iff_fg`. | |
-/ | |
namespace algebra | |
variables {K L : Type*} [field K] [field L] [algebra K L] [finite_dimensional K L] | |
lemma is_algebraic_of_finite_dimensional : is_algebraic K L := | |
begin | |
-- sorry | |
intro x, | |
rw is_algebraic_iff_is_integral, | |
apply is_integral_of_noetherian, | |
refine is_noetherian.iff_fg.2 _, | |
assumption, | |
-- sorry | |
end | |
end algebra | |
/-! ## Exercise 3 | |
In this exercise we will define the Frobenius morphism. | |
-/ | |
section | |
variables (p : β) [fact p.prime] | |
variables (K : Type*) [field K] [char_p K p] | |
/-! ### Subchallenge -/ | |
lemma add_pow_char' (x y : K) : (x + y) ^ p = x ^ p + y ^ p := | |
begin | |
-- Hint: `add_pow_char` already exists. | |
-- You can use it if you don't want to spend time on this. | |
/- Hints if you do want to attempt this: | |
* `finset.sum_range_succ` | |
* `finset.sum_eq_single` | |
* `nat.prime.ne_zero` | |
* `char_p.cast_eq_zero_iff` | |
* `nat.prime.dvd_choose_self` | |
* `fact.out p.prime` obtains the primality of `p` from the typeclass assumption `[fact p.prime]` | |
-/ | |
-- sorry | |
rw add_pow, | |
rw sum_range_succ, | |
simp only [nat.choose_self, mul_one, nat.sub_self, nat.cast_one, add_right_inj, pow_zero], | |
rw sum_eq_single 0, | |
{ simp only [mul_one, one_mul, nat.choose_zero_right, nat.sub_zero, nat.cast_one, pow_zero, | |
add_comm], }, | |
{ intros i hi hi0, | |
convert mul_zero _, | |
rw char_p.cast_eq_zero_iff K p, | |
apply nat.prime.dvd_choose_self _ _ (fact.out p.prime), | |
{ rwa pos_iff_ne_zero }, | |
{ simpa using hi } }, | |
{ intro h, | |
simp only [nat.le_zero_iff, mem_range, not_lt] at h, | |
exfalso, | |
apply nat.prime.ne_zero _ h, | |
exact fact.out p.prime }, | |
-- sorry | |
end | |
def frobenius_hom : K β+* K := | |
{ to_fun := Ξ» x, x^p, | |
map_zero' := | |
begin | |
-- Hint: `zero_pow`, search for lemmas near `nat.prime` | |
-- sorry | |
rw zero_pow, | |
apply nat.prime.pos, | |
exact fact.out p.prime | |
-- sorry | |
end, | |
map_one' := | |
begin | |
-- sorry | |
simp, | |
-- sorry | |
end, | |
map_mul' := | |
begin | |
-- sorry | |
intros x y, | |
rw mul_pow, | |
-- sorry | |
end, | |
map_add' := | |
begin | |
-- Hint: `add_pow_char` -- can you prove that one yourself? | |
-- sorry | |
intros x y, | |
rw add_pow_char', | |
-- sorry | |
end } | |
end | |
/-! ## Exercise 4 [challenging] | |
The next exercise asks to show that a monic polynomial `f β β€[X]` is irreducible | |
if it is irreducible modulo a prime `p`. | |
This fact is also not in mathlib. | |
Hint: prove the helper lemma that is stated first. | |
Follow-up question: | |
Can you generalise `irreducible_of_irreducible_mod_prime`? | |
-/ | |
namespace polynomial | |
variables {R S : Type*} [semiring R] [comm_ring S] [is_domain S] (Ο : R β+* S) | |
/- | |
Useful library lemmas (in no particular order): | |
- `degree_eq_zero_of_is_unit` | |
- `eq_C_of_degree_eq_zero` | |
- `is_unit.map'` | |
- `leading_coeff_C` | |
- `degree_map_eq_of_leading_coeff_ne_zero` | |
- `ring_hom.is_unit_map` | |
- `is_unit.ne_zero` | |
-/ | |
lemma is_unit_of_is_unit_leading_coeff_of_is_unit_map' | |
(f : polynomial R) (hf : is_unit (leading_coeff f)) (H : is_unit (map Ο f)) : | |
is_unit f := | |
begin | |
-- sorry | |
have key := degree_eq_zero_of_is_unit H, | |
have hΟ_lcf : Ο (leading_coeff f) β 0, | |
{ apply is_unit.ne_zero, | |
apply ring_hom.is_unit_map, | |
assumption, }, | |
rw degree_map_eq_of_leading_coeff_ne_zero _ hΟ_lcf at key, | |
rw eq_C_of_degree_eq_zero key, | |
apply ring_hom.is_unit_map, | |
rw [eq_C_of_degree_eq_zero key, leading_coeff_C] at hf, | |
exact hf, | |
-- sorry | |
end | |
/- | |
Useful library lemmas (in no particular order): | |
- `ring_hom.is_unit_map` | |
- `is_unit_of_mul_is_unit_left` (also `_right`) | |
- `leading_coeff_mul` | |
- `is_unit_of_is_unit_leading_coeff_of_is_unit_map` (the helper lemma we just proved) | |
- `is_unit_one` | |
- `coe_map_ring_hom` | |
-/ | |
lemma irreducible_of_irreducible_mod_prime (f : polynomial β€) (p : β) [fact p.prime] | |
(h_mon : monic f) (h_irr : irreducible (map (int.cast_ring_hom (zmod p)) f)) : | |
irreducible f := | |
begin | |
-- sorry | |
split, | |
{ intro hf, | |
apply h_irr.1, | |
rw β coe_map_ring_hom, | |
apply ring_hom.is_unit_map, | |
exact hf, }, | |
{ intros g h Hf, | |
have aux : is_unit (leading_coeff g * leading_coeff h), | |
{ rw [β leading_coeff_mul, β Hf, h_mon.leading_coeff], exact is_unit_one, }, | |
have lc_g_unit : is_unit (leading_coeff g), | |
{ apply is_unit_of_mul_is_unit_left aux, }, | |
have lc_h_unit : is_unit (leading_coeff h), | |
{ apply is_unit_of_mul_is_unit_right aux, }, | |
rw Hf at h_irr, | |
simp at h_irr, | |
have key_fact := h_irr.is_unit_or_is_unit rfl, | |
cases key_fact with Hg Hh, | |
{ left, | |
apply is_unit_of_is_unit_leading_coeff_of_is_unit_map _ lc_g_unit Hg }, | |
{ right, | |
apply is_unit_of_is_unit_leading_coeff_of_is_unit_map _ lc_h_unit Hh, } } | |
-- sorry | |
end | |
end polynomial | |
-- SCROLL DOWN FOR THE BONUS EXERCISE | |
section | |
/-! ## Bonus exercise (wicked hard) -/ | |
noncomputable theory -- because `polynomial` is noncomputable (implementation detail) | |
open polynomial -- we want to write `X`, instead of `polynomial.X` | |
/- | |
First we make some definitions | |
Scroll to the end for the actual exercise | |
-/ | |
def partial_ramanujan_tau_polynomial (n : β) : polynomial β€ := | |
X * β k in finset.Ico 1 n, (1 - X^k)^24 | |
def ramanujan_tau (n : β) : β€ := | |
coeff (partial_ramanujan_tau_polynomial n) n | |
-- Some nice suggestive notation | |
prefix `Ο`:300 := ramanujan_tau | |
/- | |
Some lemmas to warm up | |
Hint: unfold definitions, `simp` | |
-/ | |
example : Ο 0 = 0 := | |
begin | |
-- sorry | |
simp [ramanujan_tau, partial_ramanujan_tau_polynomial], | |
-- sorry | |
end | |
example : Ο 1 = 1 := | |
begin | |
-- sorry | |
simp [ramanujan_tau, partial_ramanujan_tau_polynomial], | |
-- sorry | |
end | |
-- This one is nontrivial | |
-- Use `have : subresult,` or state helper lemmas and prove them first! | |
example : Ο 2 = -24 := | |
begin | |
-- Really, we ought to have a tactic that makes this easy | |
delta ramanujan_tau partial_ramanujan_tau_polynomial, | |
rw [mul_comm, coeff_mul_X], | |
suffices : ((1 - X) ^ 24 : polynomial β€).coeff 1 = -(24 : β), by simpa, | |
generalize : (24 : β) = n, | |
-- sorry | |
induction n with n ih, { apply coeff_one }, | |
rw [pow_succ, sub_mul, one_mul, mul_comm X, coeff_sub, coeff_mul_X], | |
rw ih, | |
suffices : ((1 - X) ^ n : polynomial β€).coeff 0 = 1, | |
{ rw [this, sub_eq_add_neg, add_comm], simp, }, | |
clear ih, | |
induction n with n ih, { simp, }, | |
rw [pow_succ, sub_mul, one_mul, coeff_sub], | |
rw ih, | |
rw coeff_mul, | |
simp, | |
-- sorry | |
end | |
/- | |
The actual exercise. Good luck (-; | |
-/ | |
theorem deligne (p : β) (hp : p.prime) : (abs (Ο p) : β) β€ 2 * p^(11/2) := | |
begin | |
-- sorry | |
-- I did not even start this proof | |
sorry | |
-- sorry | |
end | |
end | |