Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /lftcm /solutions /thursday /groups_rings_fields.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.2 kB
import linear_algebra.finite_dimensional
import ring_theory.algebraic
import data.zmod.basic
import data.real.basic
import tactic
/-!
```
____
/ ___|_ __ ___ _ _ _ __ ___
| | _| '__/ _ \| | | | '_ \/ __|
| |_| | | | (_) | |_| | |_) \__ \_
\____|_| \___/ \__,_| .__/|___( )
|_| |/
_ __ (_) _ __ __ _ ___
| '__| | | | '_ \ / _` | / __|
| | | | | | | | | (_| | \__ \ _
|_| |_| |_| |_| \__, | |___/ ( )
|___/ |/
_ __ _ _ _
__ _ _ __ __| | / _| (_) ___ | | __| | ___
/ _` | | '_ \ / _` | | |_ | | / _ \ | | / _` | / __|
| (_| | | | | | | (_| | | _| | | | __/ | | | (_| | \__ \
\__,_| |_| |_| \__,_| |_| |_| \___| |_| \__,_| |___/
```
-/
/-! ## Reminder on updating the exercises
These instructions are now available at:
https://leanprover-community.github.io/lftcm2020/exercises.html
To get a new copy of the exercises,
run the following commands in your terminal:
```
leanproject get lftcm2020
cp -r lftcm2020/src/exercises_sources/ lftcm2020/src/my_exercises
code lftcm2020
```
To update your exercise files, run the following commands:
```
cd /path/to/lftcm2020
git pull
leanproject get-mathlib-cache
```
Don’t forget to copy the updated files to `src/my_exercises`.
-/
/-! ## What do we have?
Too much to cover in detail in 10 minutes.
Take a look at the β€œGeneral algebra” section on
https://leanprover-community.github.io/mathlib-overview.html
All the basic concepts are there:
`group`, `ring`, `field`, `module`, etc...
Also versions that are compatible with an ordering, like `ordered_ring`
And versions that express compatibility with a topology: `topological_group`
Finally constructions, like `polynomial R`, or `mv_polynomial Οƒ R`,
or `monoid_algebra K G`, or `β„€_[p]`, or `zmod n`, or `localization R S`.
-/
/-! ## Morphisms
* `X β†’ Y` -- ordinary function
* `X β†’+ Y` -- function respects `0` and `+`
* `X β†’* Y` -- function respects `1` and `*`
* `X β†’+* Y` -- function respects `0`, `1`, `+`, `*` (surprise!)
-/
section
-- let R and S be rings
variables {R S : Type*} [ring R] [ring S]
-- let f be a ring homomorphism; now given an term of type R, construct
-- a term of type S.
example (f : R β†’+* S) (a : R) : S := f a
/-
This heavily relies on the β€œcoercion to function”
that we have seen a couple of times this week.
-/
end
/-! ## Where are these things in the library?
`algebra/` for basic definitions and properties; β€œalgebraic hierarchy”
`group_theory/` ⎫
`ring_theory/` ⎬ β€œadvanced” and β€œspecialised” material
`field_theory/` |
`number_theory` ⎭
`data/` definitions and examples
To give an idea:
* `algebra/ordered_ring.lean`
* `ring_theory/noetherian.lean`
* `field_theory/chevalley_warning.lean`
* `data/nat/*.lean`, `data/real/*.lean`, `number_theory/padics/*.lean`
-/
/-! ## How to find things (search tools)
* `library_search` -- it often helps to carve out
the exact lemma statement that you are looking for
* online documentation: https://leanprover-community.github.io/mathlib_docs/
new search bar under construction
* Old-skool: `grep`
* Search in VS Code:
- `Ctrl - Shift - F`
-- don't forget to change settings, to search everywhere
-- click the three dots (`…`) below the search bar
-- disable the blue cogwheel
- `Ctrl - P` -- search for filenames
- `Ctrl - P`, `#` -- search for lemmas and definitions
-/
/-! ## How to find things (autocomplete)
Mathlib follows pretty strict naming conventions:
```
/-- The binomial theorem-/
theorem add_pow [comm_semiring Ξ±] (x y : Ξ±) (n : β„•) :
(x + y) ^ n = βˆ‘ m in range (n + 1), x ^ m * y ^ (n - m) * choose n m :=
(commute.all x y).add_pow n
```
After a while, you get the hang of this,
and you can start guessing names.
-/
open_locale big_operators -- nice notation βˆ‘, ∏
open finset -- `finset.range n` is the finite set `{0,1,..., n-1}`
-- Demonstrate autocompletion
example (f : β„• β†’ ℝ) (n : β„•) :
57 + βˆ‘ i in range (n+1), f i = 57 + f n + βˆ‘ i in range n, f i :=
begin
sorry
end
/-! ## How to find things (jump to definition)
Another good strategy for finding useful results about `X`,
is to β€œjump to the definition” and scroll through the next 3 screens of lemmas.
If you are looking for a basic fact about `X`, you will usually find it there.
-/
-- demonstrate β€œjump to definition”
#check polynomial.coeff
/-! ## Exercise 1
We will warm up with a well-known result:
β€œSubgroups of abelian groups are normal.”
Hints for proving this result:
* Notice that `normal` is a structure,
which you can see by going to the definition.
The `constructor` tactic will help you to get started.
-/
namespace add_subgroup
variables {A : Type*} [add_comm_group A]
lemma normal_of_add_comm_group (H : add_subgroup A) : normal H :=
begin
-- sorry
constructor,
intros x hx y,
simpa,
-- sorry
end
end add_subgroup
/-! ## Exercise 2
The following exercise will show the classical fact:
β€œFinite field extensions are algebraic.”
Hints for proving this result:
* Look up the definition of `finite_dimensional`.
* Search the library for useful lemmas about `is_algebraic` and `is_integral`.
* You can have a look at `is_noetherian.iff_fg`.
-/
namespace algebra
variables {K L : Type*} [field K] [field L] [algebra K L] [finite_dimensional K L]
lemma is_algebraic_of_finite_dimensional : is_algebraic K L :=
begin
-- sorry
intro x,
rw is_algebraic_iff_is_integral,
apply is_integral_of_noetherian,
refine is_noetherian.iff_fg.2 _,
assumption,
-- sorry
end
end algebra
/-! ## Exercise 3
In this exercise we will define the Frobenius morphism.
-/
section
variables (p : β„•) [fact p.prime]
variables (K : Type*) [field K] [char_p K p]
/-! ### Subchallenge -/
lemma add_pow_char' (x y : K) : (x + y) ^ p = x ^ p + y ^ p :=
begin
-- Hint: `add_pow_char` already exists.
-- You can use it if you don't want to spend time on this.
/- Hints if you do want to attempt this:
* `finset.sum_range_succ`
* `finset.sum_eq_single`
* `nat.prime.ne_zero`
* `char_p.cast_eq_zero_iff`
* `nat.prime.dvd_choose_self`
* `fact.out p.prime` obtains the primality of `p` from the typeclass assumption `[fact p.prime]`
-/
-- sorry
rw add_pow,
rw sum_range_succ,
simp only [nat.choose_self, mul_one, nat.sub_self, nat.cast_one, add_right_inj, pow_zero],
rw sum_eq_single 0,
{ simp only [mul_one, one_mul, nat.choose_zero_right, nat.sub_zero, nat.cast_one, pow_zero,
add_comm], },
{ intros i hi hi0,
convert mul_zero _,
rw char_p.cast_eq_zero_iff K p,
apply nat.prime.dvd_choose_self _ _ (fact.out p.prime),
{ rwa pos_iff_ne_zero },
{ simpa using hi } },
{ intro h,
simp only [nat.le_zero_iff, mem_range, not_lt] at h,
exfalso,
apply nat.prime.ne_zero _ h,
exact fact.out p.prime },
-- sorry
end
def frobenius_hom : K β†’+* K :=
{ to_fun := Ξ» x, x^p,
map_zero' :=
begin
-- Hint: `zero_pow`, search for lemmas near `nat.prime`
-- sorry
rw zero_pow,
apply nat.prime.pos,
exact fact.out p.prime
-- sorry
end,
map_one' :=
begin
-- sorry
simp,
-- sorry
end,
map_mul' :=
begin
-- sorry
intros x y,
rw mul_pow,
-- sorry
end,
map_add' :=
begin
-- Hint: `add_pow_char` -- can you prove that one yourself?
-- sorry
intros x y,
rw add_pow_char',
-- sorry
end }
end
/-! ## Exercise 4 [challenging]
The next exercise asks to show that a monic polynomial `f ∈ β„€[X]` is irreducible
if it is irreducible modulo a prime `p`.
This fact is also not in mathlib.
Hint: prove the helper lemma that is stated first.
Follow-up question:
Can you generalise `irreducible_of_irreducible_mod_prime`?
-/
namespace polynomial
variables {R S : Type*} [semiring R] [comm_ring S] [is_domain S] (Ο† : R β†’+* S)
/-
Useful library lemmas (in no particular order):
- `degree_eq_zero_of_is_unit`
- `eq_C_of_degree_eq_zero`
- `is_unit.map'`
- `leading_coeff_C`
- `degree_map_eq_of_leading_coeff_ne_zero`
- `ring_hom.is_unit_map`
- `is_unit.ne_zero`
-/
lemma is_unit_of_is_unit_leading_coeff_of_is_unit_map'
(f : polynomial R) (hf : is_unit (leading_coeff f)) (H : is_unit (map Ο† f)) :
is_unit f :=
begin
-- sorry
have key := degree_eq_zero_of_is_unit H,
have hφ_lcf : φ (leading_coeff f) ≠ 0,
{ apply is_unit.ne_zero,
apply ring_hom.is_unit_map,
assumption, },
rw degree_map_eq_of_leading_coeff_ne_zero _ hφ_lcf at key,
rw eq_C_of_degree_eq_zero key,
apply ring_hom.is_unit_map,
rw [eq_C_of_degree_eq_zero key, leading_coeff_C] at hf,
exact hf,
-- sorry
end
/-
Useful library lemmas (in no particular order):
- `ring_hom.is_unit_map`
- `is_unit_of_mul_is_unit_left` (also `_right`)
- `leading_coeff_mul`
- `is_unit_of_is_unit_leading_coeff_of_is_unit_map` (the helper lemma we just proved)
- `is_unit_one`
- `coe_map_ring_hom`
-/
lemma irreducible_of_irreducible_mod_prime (f : polynomial β„€) (p : β„•) [fact p.prime]
(h_mon : monic f) (h_irr : irreducible (map (int.cast_ring_hom (zmod p)) f)) :
irreducible f :=
begin
-- sorry
split,
{ intro hf,
apply h_irr.1,
rw ← coe_map_ring_hom,
apply ring_hom.is_unit_map,
exact hf, },
{ intros g h Hf,
have aux : is_unit (leading_coeff g * leading_coeff h),
{ rw [← leading_coeff_mul, ← Hf, h_mon.leading_coeff], exact is_unit_one, },
have lc_g_unit : is_unit (leading_coeff g),
{ apply is_unit_of_mul_is_unit_left aux, },
have lc_h_unit : is_unit (leading_coeff h),
{ apply is_unit_of_mul_is_unit_right aux, },
rw Hf at h_irr,
simp at h_irr,
have key_fact := h_irr.is_unit_or_is_unit rfl,
cases key_fact with Hg Hh,
{ left,
apply is_unit_of_is_unit_leading_coeff_of_is_unit_map _ lc_g_unit Hg },
{ right,
apply is_unit_of_is_unit_leading_coeff_of_is_unit_map _ lc_h_unit Hh, } }
-- sorry
end
end polynomial
-- SCROLL DOWN FOR THE BONUS EXERCISE
section
/-! ## Bonus exercise (wicked hard) -/
noncomputable theory -- because `polynomial` is noncomputable (implementation detail)
open polynomial -- we want to write `X`, instead of `polynomial.X`
/-
First we make some definitions
Scroll to the end for the actual exercise
-/
def partial_ramanujan_tau_polynomial (n : β„•) : polynomial β„€ :=
X * ∏ k in finset.Ico 1 n, (1 - X^k)^24
def ramanujan_tau (n : β„•) : β„€ :=
coeff (partial_ramanujan_tau_polynomial n) n
-- Some nice suggestive notation
prefix `Ο„`:300 := ramanujan_tau
/-
Some lemmas to warm up
Hint: unfold definitions, `simp`
-/
example : Ο„ 0 = 0 :=
begin
-- sorry
simp [ramanujan_tau, partial_ramanujan_tau_polynomial],
-- sorry
end
example : Ο„ 1 = 1 :=
begin
-- sorry
simp [ramanujan_tau, partial_ramanujan_tau_polynomial],
-- sorry
end
-- This one is nontrivial
-- Use `have : subresult,` or state helper lemmas and prove them first!
example : Ο„ 2 = -24 :=
begin
-- Really, we ought to have a tactic that makes this easy
delta ramanujan_tau partial_ramanujan_tau_polynomial,
rw [mul_comm, coeff_mul_X],
suffices : ((1 - X) ^ 24 : polynomial β„€).coeff 1 = -(24 : β„•), by simpa,
generalize : (24 : β„•) = n,
-- sorry
induction n with n ih, { apply coeff_one },
rw [pow_succ, sub_mul, one_mul, mul_comm X, coeff_sub, coeff_mul_X],
rw ih,
suffices : ((1 - X) ^ n : polynomial β„€).coeff 0 = 1,
{ rw [this, sub_eq_add_neg, add_comm], simp, },
clear ih,
induction n with n ih, { simp, },
rw [pow_succ, sub_mul, one_mul, coeff_sub],
rw ih,
rw coeff_mul,
simp,
-- sorry
end
/-
The actual exercise. Good luck (-;
-/
theorem deligne (p : β„•) (hp : p.prime) : (abs (Ο„ p) : ℝ) ≀ 2 * p^(11/2) :=
begin
-- sorry
-- I did not even start this proof
sorry
-- sorry
end
end