Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.13 kB
import data.set.basic data.set.lattice data.nat.parity
import tactic.linarith
open set nat function
open_locale classical
variables {α : Type*} {β : Type*} {γ : Type*} {I : Type*}
/-!
## Set exercises
These are collected from *Mathematics in Lean*.
We will go over the examples together, and then let you
work on the exercises.
There is more material here than can fit in the sessions,
but we will pick and choose as we go.
-/
section set_variables
variable x : α
variables s t u : set α
/-!
### Notation
-/
#check st -- \sub
#check xs -- \in or \mem
#check xs -- \notin
#check st -- \i or \cap
#check st -- \un or \cup
#check (: set α) -- \empty
/-!
### Examples
-/
-- Three proofs of the same fact.
-- The first two expand definitions explicitly,
-- while the third forces Lean to do the unfolding.
example (h : st) : sutu :=
begin
rw [subset_def, inter_def, inter_def],
rw subset_def at h,
dsimp,
rintros xxs, xu,
exact ⟨h _ xs, xu,
end
example (h : st) : sutu :=
begin
simp only [subset_def, mem_inter_eq] at *,
rintros xxs, xu,
exact ⟨h _ xs, xu,
end
example (h : st) : sutu :=
begin
intros x xsu,
exact ⟨h xsu.1, xsu.2
end
-- Use `cases` or `rcases` or `rintros` with union.
-- Two proofs of the same fact, one longer and one shorter.
example : s(tu)(st)(su) :=
begin
intros x hx,
have xs : xs := hx.1,
have xtu : xtu := hx.2,
cases xtu with xt xu,
{ left,
show xst,
exact ⟨xs, xt},
right,
show xsu,
exact ⟨xs, xu
end
example : s(tu)(st)(su) :=
begin
rintros xxs, xt | xu,
{ left, exact ⟨xs, xt},
right, exact ⟨xs, xu
end
-- Two examples with set difference.
-- Type it as ``\\``.
-- ``x ∈ s \ t`` expands to ``xsxt``.
example : s \ t \ us \ (tu) :=
begin
intros x xstu,
have xs : xs := xstu.1.1,
have xnt : xt := xstu.1.2,
have xnu : xu := xstu.2,
split,
{ exact xs }, dsimp,
intro xtu, -- xtxu
cases xtu with xt xu,
{ show false, from xnt xt },
show false, from xnu xu
end
example : s \ t \ us \ (tu) :=
begin
rintros x ⟨⟨xs, xnt, xnu,
use xs,
rintros (xt | xu); contradiction
end
/-!
### Exercises
-/
example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u):=
sorry
example : s \ (t ∪ u) ⊆ s \ t \ u :=
sorry
/-!
### Proving two sets are equal
-/
-- the ext tactic
example : s ∩ t = t ∩ s :=
begin
ext x,
-- simp only [mem_inter_eq], -- optional.
split,
{ rintros ⟨xs, xt⟩, exact ⟨xt, xs⟩ },
rintros ⟨xt, xs⟩, exact ⟨xs, xt⟩
end
example : s ∩ t = t ∩ s :=
by ext x; simp [and.comm]
/-!
### Exercises
-/
example : s ∩ (s ∪ t) = s :=
sorry
example : s ∪ (s ∩ t) = s :=
sorry
example : (s \ t) ∪ t = s ∪ t :=
sorry
example : (s \ t) ∪ (t \ s) = (s ∪ t) \ (s ∩ t) :=
sorry
/-!
### Set-builder notation
-/
def evens : set ℕ := {n | even n}
def odds : set ℕ := {n | ¬ even n}
example : evens ∪ odds = univ :=
begin
rw [evens, odds],
ext n,
simp,
apply classical.em
end
example : s ∩ t = {x | x ∈ s ∧ x ∈ t} := rfl
example : s ∪ t = {x | x ∈ s ∨ x ∈ t} := rfl
example : (∅ : set α) = {x | false} := rfl
example : (univ : set α) = {x | true} := rfl
example (x : ℕ) (h : x ∈ (∅ : set ℕ)) : false :=
h
example (x : ℕ) : x ∈ (univ : set ℕ) :=
trivial
/-!
### Exercise
-/
-- Use `intro n` to unfold the definition of subset,
-- and use the simplifier to reduce the
-- set-theoretic constructions to logic.
-- We also recommend using the theorems
-- ``prime.eq_two_or_odd`` and ``even_iff``.
example : { n | nat.prime n } ∩ { n | n > 2} ⊆ { n | ¬ even n } :=
sorry
/-!
Indexed unions
-/
-- See *Mathematics in Lean* for a discussion of
-- bounded quantifiers, which we will skip here.
section
-- We can use any index type in place of ℕ
variables A B : ℕ → set α
example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) :=
begin
ext x,
simp only [mem_inter_eq, mem_Union],
split,
{ rintros ⟨xs, ⟨i, xAi⟩⟩,
exact ⟨i, xAi, xs⟩ },
rintros ⟨i, xAi, xs⟩,
exact ⟨xs, ⟨i, xAi⟩⟩
end
example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) :=
begin
ext x,
simp only [mem_inter_eq, mem_Inter],
split,
{ intro h,
split,
{ intro i,
exact (h i).1 },
intro i,
exact (h i).2 },
rintros ⟨h1, h2⟩ i,
split,
{ exact h1 i },
exact h2 i
end
end
/-!
### Exercise
-/
-- One direction requires classical logic!
-- We recommend using ``by_cases xs : x ∈ s``
-- at an appropriate point in the proof.
section
variables A B : ℕ → set α
example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) :=
sorry
end
/-
Mathlib also has bounded unions and intersections,
`⋃ x ∈ s, f x` and `⋂ xs, f x`,
and set unions and intersections, `⋃₀ s` and `⋂₀ s`,
where `s : set α`.
See *Mathematics in Lean* for details.
-/
end set_variables
/-!
### Functions
-/
section function_variables
variable f : α → β
variables s t : set α
variables u v : set β
variable A : I → set α
variable B : I → set β
#check f '' s
#check image f s
#check f ⁻¹' u -- type as \inv' and then hit space or tab
#check preimage f u
example : f '' s = {y | ∃ x, x ∈ s ∧ f x = y} := rfl
example : f ⁻¹' u = {x | f x ∈ u } := rfl
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v :=
by { ext, refl }
example : f '' (s ∪ t) = f '' s ∪ f '' t :=
begin
ext y, split,
{ rintros ⟨x, xs | xt, rfl⟩,
{ left, use [x, xs] },
right, use [x, xt] },
rintros (⟨x, xs, rfl⟩ | ⟨x, xt, rfl⟩),
{ use [x, or.inl xs] },
use [x, or.inr xt]
end
example : s ⊆ f ⁻¹' (f '' s) :=
begin
intros x xs,
show f x ∈ f '' s,
use [x, xs]
end
/-!
### Exercises
-/
example : f '' s ⊆ u ↔ s ⊆ f ⁻¹' u :=
sorry
example (h : injective f) : f ⁻¹' (f '' s) ⊆ s :=
sorry
example : f '' (f⁻¹' u) ⊆ u :=
sorry
example (h : surjective f) : u ⊆ f '' (f⁻¹' u) :=
sorry
example (h : s ⊆ t) : f '' s ⊆ f '' t :=
sorry
example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v :=
sorry
example : f ⁻¹' (u ∪ v) = f ⁻¹' u ∪ f ⁻¹' v :=
sorry
example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t :=
sorry
example (h : injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) :=
sorry
example : f '' s \ f '' t ⊆ f '' (s \ t) :=
sorry
example : f ⁻¹' u \ f ⁻¹' v ⊆ f ⁻¹' (u \ v) :=
sorry
example : f '' s ∩ v = f '' (s ∩ f ⁻¹' v) :=
sorry
example : f '' (s ∩ f ⁻¹' u) ⊆ f '' s ∪ u :=
sorry
example : s ∩ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∩ u) :=
sorry
example : s ∪ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∪ u) :=
sorry
example : f '' (⋃ i, A i) = ⋃ i, f '' A i :=
sorry
example : f '' (⋂ i, A i) ⊆ ⋂ i, f '' A i :=
sorry
example (i : I) (injf : injective f) : (⋂ i, f '' A i) ⊆ f '' (⋂ i, A i) :=
sorry
example : f ⁻¹' (⋃ i, B i) = ⋃ i, f ⁻¹' (B i) :=
sorry
example : f ⁻¹' (⋂ i, B i) = ⋂ i, f ⁻¹' (B i) :=
sorry
/-
There is a lot more in *Mathematics in Lean* that we will not have time for!
There is a discussion of injectivity, more exercises on images and ranges,
and a discussion of inverses.
But we will close with on last exercise. Remember that `surjective f`
says `∀ y, ∃ x, f x = y`.
See if you can understand the proof of Cantor's famous theorem that there is no
surjective function from its set to its powerset, and
fill in the two lines that are missing.
-/
theorem Cantor :f : α → set α, ¬ surjective f :=
begin
intros f surjf,
let S := { i | if i},
rcases surjf S withj, h,
have h: jf j,
{ intro h',
have : j ∉ f j,
{ by rwa h at h' },
contradiction },
have h: jS,
sorry
,
have h: jS,
sorry
,
contradiction
end
end function_variables