Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import data.set.basic data.set.lattice data.nat.parity | |
import tactic.linarith | |
open set nat function | |
open_locale classical | |
variables {α : Type*} {β : Type*} {γ : Type*} {I : Type*} | |
/-! | |
## Set exercises | |
These are collected from *Mathematics in Lean*. | |
We will go over the examples together, and then let you | |
work on the exercises. | |
There is more material here than can fit in the sessions, | |
but we will pick and choose as we go. | |
-/ | |
section set_variables | |
variable x : α | |
variables s t u : set α | |
/-! | |
### Notation | |
-/ | |
#check s ⊆ t -- \sub | |
#check x ∈ s -- \in or \mem | |
#check x ∉ s -- \notin | |
#check s ∩ t -- \i or \cap | |
#check s ∪ t -- \un or \cup | |
#check (∅ : set α) -- \empty | |
/-! | |
### Examples | |
-/ | |
-- Three proofs of the same fact. | |
-- The first two expand definitions explicitly, | |
-- while the third forces Lean to do the unfolding. | |
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := | |
begin | |
rw [subset_def, inter_def, inter_def], | |
rw subset_def at h, | |
dsimp, | |
rintros x ⟨xs, xu⟩, | |
exact ⟨h _ xs, xu⟩, | |
end | |
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := | |
begin | |
simp only [subset_def, mem_inter_eq] at *, | |
rintros x ⟨xs, xu⟩, | |
exact ⟨h _ xs, xu⟩, | |
end | |
example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := | |
begin | |
intros x xsu, | |
exact ⟨h xsu.1, xsu.2⟩ | |
end | |
-- Use `cases` or `rcases` or `rintros` with union. | |
-- Two proofs of the same fact, one longer and one shorter. | |
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) := | |
begin | |
intros x hx, | |
have xs : x ∈ s := hx.1, | |
have xtu : x ∈ t ∪ u := hx.2, | |
cases xtu with xt xu, | |
{ left, | |
show x ∈ s ∩ t, | |
exact ⟨xs, xt⟩ }, | |
right, | |
show x ∈ s ∩ u, | |
exact ⟨xs, xu⟩ | |
end | |
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) := | |
begin | |
rintros x ⟨xs, xt | xu⟩, | |
{ left, exact ⟨xs, xt⟩ }, | |
right, exact ⟨xs, xu⟩ | |
end | |
-- Two examples with set difference. | |
-- Type it as ``\\``. | |
-- ``x ∈ s \ t`` expands to ``x ∈ s ∧ x ∉ t``. | |
example : s \ t \ u ⊆ s \ (t ∪ u) := | |
begin | |
intros x xstu, | |
have xs : x ∈ s := xstu.1.1, | |
have xnt : x ∉ t := xstu.1.2, | |
have xnu : x ∉ u := xstu.2, | |
split, | |
{ exact xs }, dsimp, | |
intro xtu, -- x ∈ t ∨ x ∈ u | |
cases xtu with xt xu, | |
{ show false, from xnt xt }, | |
show false, from xnu xu | |
end | |
example : s \ t \ u ⊆ s \ (t ∪ u) := | |
begin | |
rintros x ⟨⟨xs, xnt⟩, xnu⟩, | |
use xs, | |
rintros (xt | xu); contradiction | |
end | |
/-! | |
### Exercises | |
-/ | |
example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u):= | |
sorry | |
example : s \ (t ∪ u) ⊆ s \ t \ u := | |
sorry | |
/-! | |
### Proving two sets are equal | |
-/ | |
-- the ext tactic | |
example : s ∩ t = t ∩ s := | |
begin | |
ext x, | |
-- simp only [mem_inter_eq], -- optional. | |
split, | |
{ rintros ⟨xs, xt⟩, exact ⟨xt, xs⟩ }, | |
rintros ⟨xt, xs⟩, exact ⟨xs, xt⟩ | |
end | |
example : s ∩ t = t ∩ s := | |
by ext x; simp [and.comm] | |
/-! | |
### Exercises | |
-/ | |
example : s ∩ (s ∪ t) = s := | |
sorry | |
example : s ∪ (s ∩ t) = s := | |
sorry | |
example : (s \ t) ∪ t = s ∪ t := | |
sorry | |
example : (s \ t) ∪ (t \ s) = (s ∪ t) \ (s ∩ t) := | |
sorry | |
/-! | |
### Set-builder notation | |
-/ | |
def evens : set ℕ := {n | even n} | |
def odds : set ℕ := {n | ¬ even n} | |
example : evens ∪ odds = univ := | |
begin | |
rw [evens, odds], | |
ext n, | |
simp, | |
apply classical.em | |
end | |
example : s ∩ t = {x | x ∈ s ∧ x ∈ t} := rfl | |
example : s ∪ t = {x | x ∈ s ∨ x ∈ t} := rfl | |
example : (∅ : set α) = {x | false} := rfl | |
example : (univ : set α) = {x | true} := rfl | |
example (x : ℕ) (h : x ∈ (∅ : set ℕ)) : false := | |
h | |
example (x : ℕ) : x ∈ (univ : set ℕ) := | |
trivial | |
/-! | |
### Exercise | |
-/ | |
-- Use `intro n` to unfold the definition of subset, | |
-- and use the simplifier to reduce the | |
-- set-theoretic constructions to logic. | |
-- We also recommend using the theorems | |
-- ``prime.eq_two_or_odd`` and ``even_iff``. | |
example : { n | nat.prime n } ∩ { n | n > 2} ⊆ { n | ¬ even n } := | |
sorry | |
/-! | |
Indexed unions | |
-/ | |
-- See *Mathematics in Lean* for a discussion of | |
-- bounded quantifiers, which we will skip here. | |
section | |
-- We can use any index type in place of ℕ | |
variables A B : ℕ → set α | |
example : s ∩ (⋃ i, A i) = ⋃ i, (A i ∩ s) := | |
begin | |
ext x, | |
simp only [mem_inter_eq, mem_Union], | |
split, | |
{ rintros ⟨xs, ⟨i, xAi⟩⟩, | |
exact ⟨i, xAi, xs⟩ }, | |
rintros ⟨i, xAi, xs⟩, | |
exact ⟨xs, ⟨i, xAi⟩⟩ | |
end | |
example : (⋂ i, A i ∩ B i) = (⋂ i, A i) ∩ (⋂ i, B i) := | |
begin | |
ext x, | |
simp only [mem_inter_eq, mem_Inter], | |
split, | |
{ intro h, | |
split, | |
{ intro i, | |
exact (h i).1 }, | |
intro i, | |
exact (h i).2 }, | |
rintros ⟨h1, h2⟩ i, | |
split, | |
{ exact h1 i }, | |
exact h2 i | |
end | |
end | |
/-! | |
### Exercise | |
-/ | |
-- One direction requires classical logic! | |
-- We recommend using ``by_cases xs : x ∈ s`` | |
-- at an appropriate point in the proof. | |
section | |
variables A B : ℕ → set α | |
example : s ∪ (⋂ i, A i) = ⋂ i, (A i ∪ s) := | |
sorry | |
end | |
/- | |
Mathlib also has bounded unions and intersections, | |
`⋃ x ∈ s, f x` and `⋂ x ∈ s, f x`, | |
and set unions and intersections, `⋃₀ s` and `⋂₀ s`, | |
where `s : set α`. | |
See *Mathematics in Lean* for details. | |
-/ | |
end set_variables | |
/-! | |
### Functions | |
-/ | |
section function_variables | |
variable f : α → β | |
variables s t : set α | |
variables u v : set β | |
variable A : I → set α | |
variable B : I → set β | |
#check f '' s | |
#check image f s | |
#check f ⁻¹' u -- type as \inv' and then hit space or tab | |
#check preimage f u | |
example : f '' s = {y | ∃ x, x ∈ s ∧ f x = y} := rfl | |
example : f ⁻¹' u = {x | f x ∈ u } := rfl | |
example : f ⁻¹' (u ∩ v) = f ⁻¹' u ∩ f ⁻¹' v := | |
by { ext, refl } | |
example : f '' (s ∪ t) = f '' s ∪ f '' t := | |
begin | |
ext y, split, | |
{ rintros ⟨x, xs | xt, rfl⟩, | |
{ left, use [x, xs] }, | |
right, use [x, xt] }, | |
rintros (⟨x, xs, rfl⟩ | ⟨x, xt, rfl⟩), | |
{ use [x, or.inl xs] }, | |
use [x, or.inr xt] | |
end | |
example : s ⊆ f ⁻¹' (f '' s) := | |
begin | |
intros x xs, | |
show f x ∈ f '' s, | |
use [x, xs] | |
end | |
/-! | |
### Exercises | |
-/ | |
example : f '' s ⊆ u ↔ s ⊆ f ⁻¹' u := | |
sorry | |
example (h : injective f) : f ⁻¹' (f '' s) ⊆ s := | |
sorry | |
example : f '' (f⁻¹' u) ⊆ u := | |
sorry | |
example (h : surjective f) : u ⊆ f '' (f⁻¹' u) := | |
sorry | |
example (h : s ⊆ t) : f '' s ⊆ f '' t := | |
sorry | |
example (h : u ⊆ v) : f ⁻¹' u ⊆ f ⁻¹' v := | |
sorry | |
example : f ⁻¹' (u ∪ v) = f ⁻¹' u ∪ f ⁻¹' v := | |
sorry | |
example : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := | |
sorry | |
example (h : injective f) : f '' s ∩ f '' t ⊆ f '' (s ∩ t) := | |
sorry | |
example : f '' s \ f '' t ⊆ f '' (s \ t) := | |
sorry | |
example : f ⁻¹' u \ f ⁻¹' v ⊆ f ⁻¹' (u \ v) := | |
sorry | |
example : f '' s ∩ v = f '' (s ∩ f ⁻¹' v) := | |
sorry | |
example : f '' (s ∩ f ⁻¹' u) ⊆ f '' s ∪ u := | |
sorry | |
example : s ∩ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∩ u) := | |
sorry | |
example : s ∪ f ⁻¹' u ⊆ f ⁻¹' (f '' s ∪ u) := | |
sorry | |
example : f '' (⋃ i, A i) = ⋃ i, f '' A i := | |
sorry | |
example : f '' (⋂ i, A i) ⊆ ⋂ i, f '' A i := | |
sorry | |
example (i : I) (injf : injective f) : (⋂ i, f '' A i) ⊆ f '' (⋂ i, A i) := | |
sorry | |
example : f ⁻¹' (⋃ i, B i) = ⋃ i, f ⁻¹' (B i) := | |
sorry | |
example : f ⁻¹' (⋂ i, B i) = ⋂ i, f ⁻¹' (B i) := | |
sorry | |
/- | |
There is a lot more in *Mathematics in Lean* that we will not have time for! | |
There is a discussion of injectivity, more exercises on images and ranges, | |
and a discussion of inverses. | |
But we will close with on last exercise. Remember that `surjective f` | |
says `∀ y, ∃ x, f x = y`. | |
See if you can understand the proof of Cantor's famous theorem that there is no | |
surjective function from its set to its powerset, and | |
fill in the two lines that are missing. | |
-/ | |
theorem Cantor : ∀ f : α → set α, ¬ surjective f := | |
begin | |
intros f surjf, | |
let S := { i | i ∉ f i}, | |
rcases surjf S with ⟨j, h⟩, | |
have h₁ : j ∉ f j, | |
{ intro h', | |
have : j ∉ f j, | |
{ by rwa h at h' }, | |
contradiction }, | |
have h₂ : j ∈ S, | |
sorry | |
, | |
have h₃ : j ∉ S, | |
sorry | |
, | |
contradiction | |
end | |
end function_variables | |