Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import analysis.analytic.composition | |
import analysis.inner_product_space.basic | |
import analysis.normed_space.pi_Lp | |
import analysis.calculus.iterated_deriv | |
import analysis.calculus.mean_value | |
import analysis.calculus.implicit | |
import measure_theory.integral.bochner | |
import measure_theory.measure.lebesgue | |
import linear_algebra.matrix.trace | |
namespace lftcm | |
noncomputable theory | |
open real | |
open_locale topological_space filter classical real | |
/-! | |
# Derivatives | |
Lean can automatically compute some simple derivatives using `simp` tactic. | |
-/ | |
example : deriv (λ x : ℝ, x^5) 6 = 5 * 6^4 := sorry | |
example (x₀ : ℝ) (h₀ : x₀ ≠ 0) : deriv (λ x:ℝ, 1 / x) x₀ = -1 / x₀^2 := sorry | |
example : deriv sin π = -1 := sorry | |
-- Sometimes you need `ring` and/or `field_simp` after `simp` | |
example (x₀ : ℝ) (h : x₀ ≠ 0) : | |
deriv (λ x : ℝ, exp(x^2) / x^5) x₀ = (2 * x₀^2 - 5) * exp (x₀^2) / x₀^6 := | |
begin | |
have : x₀^5 ≠ 0, { sorry }, | |
simp [this], | |
sorry | |
end | |
example (a b x₀ : ℝ) (h : x₀ ≠ 1) : | |
deriv (λ x, (a * x + b) / (x - 1)) x₀ = -(a + b) / (x₀ - 1)^2 := | |
begin | |
sorry | |
end | |
-- Currently `simp` is unable to solve the next example. | |
-- A PR that will make this example provable `by simp` would be very welcome! | |
example : iterated_deriv 7 (λ x, sin (tan x) - tan (sin x)) 0 = -168 := sorry | |
variables (m n : Type) [fintype m] [fintype n] | |
-- Generalizations of the next two instances should go to `analysis/normed_space/basic` | |
instance : normed_add_comm_group (matrix m n ℝ) := pi.normed_add_comm_group | |
instance : normed_space ℝ (matrix m n ℝ) := pi.normed_space | |
/-- Trace of a matrix as a continuous linear map. -/ | |
def matrix.trace_clm : matrix n n ℝ →L[ℝ] ℝ := | |
(matrix.trace_linear_map n ℝ ℝ).mk_continuous (fintype.card n) | |
begin | |
sorry | |
end | |
-- Another hard exercise that would make a very good PR | |
example : | |
has_fderiv_at (λ m : matrix n n ℝ, m.det) (matrix.trace_clm n) 1 := | |
begin | |
sorry | |
end | |
end lftcm | |
#check deriv | |
#check has_fderiv_at | |
example (y : ℝ) : has_deriv_at (λ x : ℝ, 2 * x + 5) 2 y := | |
begin | |
have := ((has_deriv_at_id y).const_mul 2).add_const 5, | |
rwa [mul_one] at this, | |
end | |
example (y : ℝ) : deriv (λ x : ℝ, 2 * x + 5) y = 2 := by simp | |
#check exists_has_deriv_at_eq_slope | |
#check exists_deriv_eq_slope | |
open set topological_space | |
namespace measure_theory | |
variables {α E : Type*} [measurable_space α] [normed_add_comm_group E] [normed_space ℝ E] | |
[measurable_space E] [borel_space E] [complete_space E] [second_countable_topology E] | |
{μ : measure α} {f : α → E} | |
#check integral | |
#check ∫ x : ℝ, x ^ 2 | |
#check ∫ x in Icc (0:ℝ) 1, x^2 | |
#check ∫ x, f x ∂μ | |
#check integral_add | |
#check integral_add_measure | |
#check integral_union | |
lemma integral_sdiff (f : α → E) (hfm : measurable f) {s t : set α} | |
(hs : measurable_set s) (ht : measurable_set t) (hst : s ⊆ t) | |
(hfi : integrable f $ μ.restrict t) : | |
∫ x in t \ s, f x ∂μ = ∫ x in t, f x ∂μ - ∫ x in s, f x ∂μ := | |
begin | |
-- hint: apply `integral_union` to `s` and `t \ s` | |
sorry | |
end | |
lemma integral_Icc_sub_Icc_of_le [linear_order α] [topological_space α] [order_topology α] | |
[borel_space α] {x y z : α} (hxy : x ≤ y) (hyz : y ≤ z) | |
{f : α → ℝ} (hfm : measurable f) (hfi : integrable f (μ.restrict $ Icc x z)) : | |
∫ a in Icc x z, f a ∂μ - ∫ a in Icc x y, f a ∂μ = ∫ a in Ioc y z, f a ∂μ := | |
begin | |
rw [sub_eq_iff_eq_add', ← integral_union, Icc_union_Ioc_eq_Icc]; | |
sorry | |
end | |
#check set_integral_const | |
end measure_theory | |
open measure_theory | |
theorem FTC {f : ℝ → ℝ} {x y : ℝ} (hy : continuous_at f y) (h : x < y) | |
(hfm : measurable f) | |
(hfi : integrable f (volume.restrict $ Icc x y)) : | |
has_deriv_at (λ z, ∫ a in Icc x z, f a) (f y) y := | |
begin | |
have A : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Ici y) y, | |
{ rw [has_deriv_within_at_iff_tendsto, metric.tendsto_nhds_within_nhds], | |
intros ε ε0, | |
rw [metric.continuous_at_iff] at hy, | |
rcases hy ε ε0 with ⟨δ, δ0, hδ⟩, | |
use [δ, δ0], | |
intros z hyz hzδ, | |
rw [integral_Icc_sub_Icc_of_le, dist_zero_right, real.norm_eq_abs, abs_mul, abs_of_nonneg, abs_of_nonneg], | |
all_goals {sorry } }, | |
have B : has_deriv_within_at (λ z, ∫ a in Icc x z, f a) (f y) (Iic y) y, | |
{ sorry }, | |
have := B.union A, | |
simpa using this | |
end | |