Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ---------------------------------------------------------------------- *) | |
(* Simplification *) | |
(* ---------------------------------------------------------------------- *) | |
(* | |
let psimplify1 fm = | |
match fm with | |
Not False -> True | |
| Not True -> False | |
| And(False,q) -> False | |
| And(p,False) -> False | |
| And(True,q) -> q | |
| And(p,True) -> p | |
| Or(False,q) -> q | |
| Or(p,False) -> p | |
| Or(True,q) -> True | |
| Or(p,True) -> True | |
| Imp(False,q) -> True | |
| Imp(True,q) -> q | |
| Imp(p,True) -> True | |
| Imp(p,False) -> Not p | |
| Iff(True,q) -> q | |
| Iff(p,True) -> p | |
| Iff(False,q) -> Not q | |
| Iff(p,False) -> Not p | |
| _ -> fm;; | |
*) | |
let PSIMPLIFY1_CONV = | |
let nt = `~T` | |
and t = `T` | |
and f = `F` | |
and nf = `~F` in | |
fun fm -> | |
try | |
let fm' = | |
if fm = nt then f | |
else if fm = nf then t | |
else if is_conj fm then | |
let l,r = dest_conj fm in | |
if l = f || r = f then f | |
else if l = t then r | |
else if r = t then l | |
else fm | |
else if is_disj fm then | |
let l,r = dest_disj fm in | |
if l = t || r = t then t | |
else if l = f then r | |
else if r = f then l | |
else fm | |
else if is_imp fm then | |
let l,r = dest_imp fm in | |
if l = f then t | |
else if r = t then t | |
else if l = t then r | |
else if r = f then mk_neg l | |
else fm | |
else if is_iff fm then | |
let l,r = dest_beq fm in | |
if l = f then mk_neg r | |
else if l = t then r | |
else if r = t then l | |
else if r = f then mk_neg l | |
else fm | |
else failwith "PSIMPLIFY: 0" in | |
let fm'' = mk_eq(fm,fm') in | |
prove(fm'',REWRITE_TAC[]) | |
with _ -> REFL fm;; | |
(* | |
let fm = `T /\ T` | |
PSIMPLIFY1_CONV `T /\ A` | |
let simplify1 fm = | |
match fm with | |
Forall(x,p) -> if mem x (fv p) then fm else p | |
| Exists(x,p) -> if mem x (fv p) then fm else p | |
| _ -> psimplify1 fm;; | |
*) | |
let SIMPLIFY1_CONV fm = | |
if is_forall fm || is_exists fm then | |
let x,p = dest_forall fm in | |
if mem x (frees p) then REFL fm | |
else prove(mk_eq(fm,p),REWRITE_TAC[]) | |
else PSIMPLIFY1_CONV fm;; | |
(* | |
let rec simplify fm = | |
match fm with | |
Not p -> simplify1 (Not(simplify p)) | |
| And(p,q) -> simplify1 (And(simplify p,simplify q)) | |
| Or(p,q) -> simplify1 (Or(simplify p,simplify q)) | |
| Imp(p,q) -> simplify1 (Imp(simplify p,simplify q)) | |
| Iff(p,q) -> simplify1 (Iff(simplify p,simplify q)) | |
| Forall(x,p) -> simplify1(Forall(x,simplify p)) | |
| Exists(x,p) -> simplify1(Exists(x,simplify p)) | |
| _ -> fm;; | |
*) | |
let rec SIMPLIFY_CONV = | |
let not_tm = `(~)` | |
and ex_tm = `(?)` in | |
fun fm -> | |
if is_neg fm then | |
let thm1 = SIMPLIFY_CONV (dest_neg fm) in | |
let thm2 = AP_TERM not_tm thm1 in | |
let l,r = dest_eq (concl thm2) in | |
let thm3 = SIMPLIFY1_CONV r in | |
TRANS thm2 thm3 | |
else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then | |
let op,l,r = get_binop fm in | |
let l_thm = SIMPLIFY_CONV l in | |
let r_thm = SIMPLIFY_CONV r in | |
let a_thm = (curry MK_COMB) (AP_TERM op l_thm) r_thm in | |
let al,ar = dest_eq (concl a_thm) in | |
let thm = SIMPLIFY1_CONV ar in | |
TRANS a_thm thm | |
else if is_forall fm || is_exists fm then | |
let x,bod = dest_quant fm in | |
let bod_thm = SIMPLIFY_CONV bod in | |
let lam_thm = ABS x bod_thm in | |
let q_thm = AP_TERM ex_tm lam_thm in | |
let l,r = dest_eq (concl q_thm) in | |
let thm = SIMPLIFY1_CONV r in | |
TRANS q_thm thm | |
else REFL fm;; | |
(* | |
SIMPLIFY_CONV `T /\ T \/ F` | |
let operations = | |
["=",(=/); "<",(</); ">",(>/); "<=",(<=/); ">=",(>=/); | |
"divides",(fun x y -> mod_num y x =/ Int 0)];; | |
let evalc_atom at = | |
match at with | |
R(p,[s;t]) -> | |
(try if assoc p operations (dest_numeral s) (dest_numeral t) | |
then True else False | |
with Failure _ -> Atom at) | |
| _ -> Atom at;; | |
let evalc = onatoms evalc_atom;; | |
*) | |
let REAL_LEAF_CONV fm = | |
let op,l,r = get_binop fm in | |
if op = rlt then | |
REAL_RAT_LT_CONV fm | |
else if op = rgt then | |
REAL_RAT_GT_CONV fm | |
else if op = rle then | |
REAL_RAT_LE_CONV fm | |
else if op = rge then | |
REAL_RAT_GE_CONV fm | |
else if op = req then | |
REAL_RAT_EQ_CONV fm | |
else failwith "REAL_LEAF_CONV";; | |
let EVALC_CONV = DEPTH_CONV REAL_LEAF_CONV;; | |
(* | |
EVALC_CONV `x < &0 /\ &1 < &2` | |
(EVALC_CONV THENC SIMPLIFY_CONV) `(&0 + a * &1 = &0) /\ | |
((&0 + b * &1 = &0) /\ | |
((&0 + c * &1 = &0) /\ T \/ | |
&0 + c * &1 < &0 /\ F \/ | |
&0 + c * &1 > &0 /\ F) \/ | |
&0 + b * &1 < &0 /\ T \/ | |
&0 + b * &1 > &0 /\ T) \/ | |
&0 + a * &1 < &0 /\ | |
((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\ T \/ | |
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 /\ F \/ | |
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 /\ T) \/ | |
&0 + a * &1 > &0 /\ | |
((&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) = &0) /\ T \/ | |
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) < &0 /\ T \/ | |
&0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)) > &0 /\ &1 < &2)` | |
*) | |