Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ---------------------------------------------------------------------- *) | |
(* Reals *) | |
(* ---------------------------------------------------------------------- *) | |
let real_ty = `:real`;; | |
let rx = `x:real`;; | |
let ry = `y:real`;; | |
let rz = `z:real`;; | |
let rzero = `&0`;; | |
let req = `(=):real->real->bool`;; | |
let rneq = `(<>):real->real->bool`;; | |
let rlt = `(<):real->real->bool`;; | |
let rgt = `(>):real->real->bool`;; | |
let rle = `(<=):real->real->bool`;; | |
let rge = `(>=):real->real->bool`;; | |
let rm = `( * ):real->real->real`;; | |
let rs = `(-):real->real->real`;; | |
let rn = `(--):real->real`;; | |
let rd = `(/):real->real->real`;; | |
let rp = `(+):real->real->real`;; | |
let rzero = `&0`;; | |
let rone = `&1`;; | |
let rlast = `LAST:(real) list -> real`;; | |
let rappend = `APPEND:(real) list -> real list -> real list`;; | |
let mk_rlist l = mk_list (l,real_ty);; | |
let diffl_tm = `(diffl)`;; | |
let dest_diffl tm = | |
try | |
let l,var = dest_comb tm in | |
let dp,p' = dest_comb l in | |
let d,p = dest_comb dp in | |
if not (d = diffl_tm) then failwith "dest_diffl: not a diffl" else | |
let _,bod = dest_abs p in | |
bod,p' | |
with _ -> failwith "dest_diffl";; | |
let dest_mult = | |
try | |
dest_binop rm | |
with _ -> failwith "dest_mult";; | |
let mk_mult = mk_binop rm;; | |
let pow_tm = `(pow)`;; | |
let dest_pow = | |
try | |
dest_binop pow_tm | |
with _ -> failwith "dest_pow";; | |
let mk_plus = mk_binop rp;; | |
let mk_negative = curry mk_comb rn;; | |
let dest_plus = | |
try | |
dest_binop rp | |
with _ -> failwith "dest_plus";; | |
let REAL_DENSE = prove( | |
`!x y. x < y ==> ?z. x < z /\ z < y`, | |
(* {{{ Proof *) | |
REPEAT STRIP_TAC THEN | |
CLAIM `&0 < y - x` THENL | |
[REWRITE_TAC[REAL_LT_SUB_LADD;REAL_ADD_LID] THEN | |
POP_ASSUM MATCH_ACCEPT_TAC; | |
DISCH_THEN (ASSUME_TAC o (MATCH_MP REAL_DOWN)) THEN | |
POP_ASSUM MP_TAC THEN STRIP_TAC THEN | |
EXISTS_TAC `e + x` THEN | |
STRIP_TAC THENL | |
[ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN | |
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV[GSYM REAL_ADD_RID])) THEN | |
MATCH_MP_TAC REAL_LET_ADD2 THEN | |
STRIP_TAC THENL | |
[MATCH_ACCEPT_TAC REAL_LE_REFL; | |
FIRST_ASSUM MATCH_ACCEPT_TAC]; | |
MATCH_EQ_MP_TAC ((GEN `y:real` (GEN `z:real` (ISPECL [`y:real`;`z:real`;`-- x`] REAL_LT_RADD)))) THEN | |
REWRITE_TAC[GSYM REAL_ADD_ASSOC;REAL_ADD_RINV;REAL_ADD_RID] THEN | |
REWRITE_TAC[GSYM real_sub] THEN | |
FIRST_ASSUM MATCH_ACCEPT_TAC]]);; | |
(* }}} *) | |
let REAL_LT_EXISTS = prove( | |
`!x. ?y. x < y`, | |
(* {{{ Proof *) | |
GEN_TAC THEN | |
EXISTS_TAC `x + &1` THEN | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let REAL_GT_EXISTS = prove( | |
`!x. ?y. y < x`, | |
(* {{{ Proof *) | |
GEN_TAC THEN | |
EXISTS_TAC `x - &1` THEN | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let REAL_DIV_DISTRIB_L = prove_by_refinement( | |
`!x y z. x / (y * z) = (x / y) * (&1 / z)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_div;REAL_INV_MUL]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_DIV_DISTRIB_R = prove_by_refinement( | |
`!x y z. x / (y * z) = (&1 / y) * (x / z)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_div;REAL_INV_MUL]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_DIV_DISTRIB_2 = prove_by_refinement( | |
`!x y z. (x * w) / (y * z) = (x / y) * (w / z)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_div;REAL_INV_MUL]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_DIV_ADD_DISTRIB = prove_by_refinement( | |
`!x y z. (x + y) / z = (x / z) + (y / z)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_div;REAL_INV_MUL]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let DIV_ID = prove_by_refinement( | |
`!x. ~(x = &0) ==> (x / x = &1)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_div]; | |
ASM_MESON_TAC[REAL_MUL_LINV;REAL_MUL_SYM]; | |
]);; | |
(* }}} *) | |
let POS_POW = prove_by_refinement( | |
`!c x. &0 < c /\ &0 < x ==> &0 < c * x pow k`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[REAL_POW_LT;REAL_LT_MUL] | |
]);; | |
(* }}} *) | |
let POS_NAT_POW = prove_by_refinement( | |
`!c n. 0 < n /\ &0 < c ==> &0 < c * &n pow k`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[REAL_POW_LT;REAL_LT_MUL;REAL_LT;] | |
]);; | |
(* }}} *) | |
let REAL_NUM_LE_0 = prove_by_refinement( | |
`!n. &0 <= (&n)`, | |
(* {{{ Proof *) | |
[ | |
INDUCT_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[REAL]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_ARCH_SIMPLE_LT = prove_by_refinement( | |
`!x. ?n. x < &n`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
CHOOSE_THEN ASSUME_TAC (ISPEC `x:real` REAL_ARCH_SIMPLE); | |
EXISTS_TAC `SUC n`; | |
REWRITE_TAC[REAL]; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let BINOMIAL_LEMMA_LT = prove_by_refinement( | |
`!x y. &0 < x /\ &0 < y | |
==> !n. 0 < n ==> x pow n + y pow n <= (x + y) pow n`, | |
(* {{{ Proof *) | |
[ | |
REPEAT GEN_TAC; | |
STRIP_TAC; | |
INDUCT_TAC; | |
ARITH_TAC; | |
REWRITE_TAC[real_pow]; | |
STRIP_TAC; | |
CASES_ON `n = 0`; | |
ASM_REWRITE_TAC[real_pow;REAL_MUL_RID;REAL_LE_REFL]; | |
CLAIM `0 < n`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
DISCH_THEN (fun x -> FIRST_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `(x + y) * (x pow n + y pow n)`; | |
STRIP_TAC; | |
REWRITE_TAC[REAL_ADD_RDISTRIB]; | |
MATCH_MP_TAC REAL_LE_ADD2; | |
CONJ_TAC; | |
MATCH_MP_TAC REAL_LE_LMUL; | |
STRIP_TAC; | |
FIRST_ASSUM (fun x -> MP_TAC x THEN ARITH_TAC); | |
MATCH_MP_TAC (REAL_ARITH `&0 <= y ==> x <= x + y`); | |
MATCH_MP_TAC REAL_POW_LE; | |
FIRST_ASSUM (fun x -> MP_TAC x THEN ARITH_TAC); | |
REWRITE_TAC[REAL_ADD_LDISTRIB]; | |
MATCH_MP_TAC (REAL_ARITH `&0 <= y ==> x <= y + x`); | |
MATCH_MP_TAC REAL_LE_MUL; | |
CONJ_TAC; | |
FIRST_ASSUM (fun x -> MP_TAC x THEN REAL_ARITH_TAC); | |
MATCH_MP_TAC (REAL_ARITH `x < y ==> x <= y`); | |
MATCH_MP_TAC REAL_POW_LT; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
MATCH_MP_TAC REAL_LE_LMUL; | |
CONJ_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let BINOMIAL_LEMMA = prove_by_refinement( | |
`!x y. &0 <= x /\ &0 <= y | |
==> !n. 0 < n ==> x pow n + y pow n <= (x + y) pow n`, | |
(* {{{ Proof *) | |
[ | |
REPEAT GEN_TAC; | |
STRIP_TAC; | |
CASES_ON `(x = &0) \/ (y = &0)`; | |
POP_ASSUM DISJ_CASES_TAC; | |
ASM_REWRITE_TAC[real_pow;REAL_ADD_LID;POW_0]; | |
REPEAT STRIP_TAC; | |
CLAIM `n = SUC (PRE n)`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[POW_0;REAL_ADD_LID;real_pow;REAL_LE_REFL]; | |
REPEAT STRIP_TAC; | |
CLAIM `n = SUC (PRE n)`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[POW_0;REAL_ADD_LID;REAL_ADD_RID;real_pow;REAL_LE_REFL]; | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC; | |
MATCH_MP_TAC BINOMIAL_LEMMA_LT; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let NEG_ABS = prove_by_refinement( | |
`!x. -- (abs x) <= &0`, | |
(* {{{ Proof *) | |
[ | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_MUL_LT = prove_by_refinement( | |
`!x y. x * y < &0 <=> (x < &0 /\ &0 < y) \/ (&0 < x /\ y < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
CCONTR_TAC; | |
REWRITE_ASSUMS ([REAL_NOT_LT;DE_MORGAN_THM;] @ !REAL_REWRITES); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `x = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
REWRITE_ASSUMS !REAL_REWRITES; | |
ASM_MESON_TAC !REAL_REWRITES; | |
CLAIM `&0 * &0 <= x * y`; | |
MATCH_MP_TAC REAL_LE_MUL2; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REAL_SIMP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `&0 * &0 <= --x * --y`; | |
MATCH_MP_TAC REAL_LE_MUL2; | |
REAL_SIMP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REAL_SIMP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `y = &0`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
REWRITE_ASSUMS !REAL_REWRITES; | |
ASM_REWRITE_TAC[]; | |
EVERY_ASSUM MP_TAC THEN ARITH_TAC; | |
(* save *) | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < --x`; | |
EVERY_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 * &0 < --x * y`; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
REAL_SIMP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REAL_SIMP_TAC; | |
REWRITE_TAC[REAL_ARITH `--y * x = --(y * x)`]; | |
REAL_ARITH_TAC; | |
CLAIM `&0 < --y`; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 * &0 < x * --y`; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
REAL_SIMP_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
REWRITE_TAC[REAL_ARITH `x * --y = --(x * y)`]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_MUL_GT = prove_by_refinement( | |
`!x y. &0 < x * y <=> (x < &0 /\ y < &0) \/ (&0 < x /\ &0 < y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_ASSUMS[ARITH_RULE `x < y <=> -- y < -- x`]; | |
REWRITE_ASSUMS[GSYM REAL_MUL_RNEG]; | |
REWRITE_ASSUMS[REAL_ARITH `-- &0 = &0`; REAL_MUL_LT]; | |
POP_ASSUM MP_TAC THEN REPEAT STRIP_TAC; | |
DISJ1_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC [ARITH_RULE `x * y = --x * --y`]; | |
ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`]; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`]; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_DIV_INV = prove_by_refinement( | |
`!y z. &0 < y /\ y < z ==> &1 / z < &1 / y`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_div]; | |
REAL_SIMP_TAC; | |
MATCH_MP_TAC REAL_LT_INV2; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let REAL_DIV_DENOM_LT = prove_by_refinement( | |
`!x y z. &0 < x /\ &0 < y /\ y < z ==> x / z < x / y`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP; | |
EXISTS_TAC `inv x`; | |
REPEAT STRIP_TAC; | |
REAL_SOLVE_TAC; | |
REWRITE_TAC[real_div]; | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ;REAL_MUL_ASSOC;REAL_MUL_LINV;]; | |
REAL_SIMP_TAC; | |
MATCH_MP_TAC (REWRITE_RULE [REAL_MUL_LID;real_div] REAL_DIV_INV); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let REAL_DIV_DENOM_LE = prove_by_refinement( | |
`!x y z. &0 <= x /\ &0 < y /\ y <= z ==> x / z <= x / y`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CASES_ON `x = &0`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[real_div;REAL_MUL_LZERO;REAL_LE_REFL]; | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP; | |
EXISTS_TAC `inv x`; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_INV; | |
ASM_MESON_TAC[REAL_LT_LE]; | |
REWRITE_TAC[real_div]; | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ;REAL_MUL_ASSOC;REAL_MUL_LINV;]; | |
REAL_SIMP_TAC; | |
MATCH_MP_TAC REAL_LE_INV2; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let REAL_NEG_DIV = prove_by_refinement( | |
`!x y. -- x / -- y = x / y`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_div]; | |
REWRITE_TAC[REAL_INV_NEG]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let REAL_GT_IMP_NZ = prove( | |
`!x. x < &0 ==> ~(x = &0)`, | |
(* {{{ Proof *) | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let REAL_NEG_NZ = prove( | |
`!x. x < &0 ==> ~(x = &0)`, | |
(* {{{ Proof *) | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let PARITY_POW_LT = prove_by_refinement( | |
`!a n. a < &0 ==> (EVEN n ==> a pow n > &0) /\ (ODD n ==> a pow n < &0)`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
INDUCT_TAC; | |
REWRITE_TAC[EVEN;ODD;real_pow]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (fun x -> REWRITE_ASSUMS[x] THEN ASSUME_TAC x); | |
REWRITE_TAC[EVEN;ODD;real_pow;NOT_EVEN;NOT_ODD]; | |
DISJ_CASES_TAC (ISPEC `n:num` EVEN_OR_ODD); | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[real_gt;REAL_MUL_GT]; | |
ASM_MESON_TAC[EVEN_AND_ODD]; | |
ASM_REWRITE_TAC[real_gt;REAL_MUL_LT]; | |
ASM_MESON_TAC[real_gt]; | |
ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[real_gt;REAL_MUL_LT;REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[EVEN_AND_ODD]; | |
]);; | |
(* }}} *) | |
let EVEN_ODD_POW = prove_by_refinement( | |
`!a n. a <> &0 ==> | |
(EVEN n ==> a pow n > &0) /\ | |
(ODD n ==> a < &0 ==> a pow n < &0) /\ | |
(ODD n ==> a > &0 ==> a pow n > &0)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NEQ]; | |
REPEAT_N 2 STRIP_TAC; | |
CLAIM `a < &0 \/ a > &0 \/ (a = &0)`; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[PARITY_POW_LT]; | |
ASM_MESON_TAC[PARITY_POW_LT]; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt]; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt]; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_POW_LT;real_gt]; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |