Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let TRAPOUT cont mat_thm ex_thms fm = | |
try | |
cont mat_thm ex_thms | |
with Isign (false_thm,ex_thms) -> | |
let ftm = mk_eq(fm,f_tm) in | |
let fthm = CONTR ftm false_thm in | |
let ex_thms' = sort (fun x y -> xterm_lt (fst y) (fst x)) ex_thms in | |
let fthm' = rev_itlist CHOOSE ex_thms' fthm in | |
fthm';; | |
let get_repeats l = | |
let rec get_repeats l seen ind = | |
match l with | |
[] -> [] | |
| h::t -> | |
if mem h seen then ind::get_repeats t seen (ind + 1) | |
else get_repeats t (h::seen) (ind + 1) in | |
get_repeats l [] 0;; | |
let subtract_index l = | |
let rec subtract_index l ind = | |
match l with | |
[] -> [] | |
| h::t -> (h - ind):: (subtract_index t (ind + 1)) in | |
subtract_index l 0;; | |
(* | |
subtract_index (get_repeats [1; 2; 1; 2 ; 3]) | |
*) | |
let remove_column n isigns_thm = | |
let thms = interpsigns_thms2 isigns_thm in | |
let l,r = chop_list n thms in | |
let thms' = l @ tl r in | |
mk_interpsigns thms';; | |
let REMOVE_COLUMN n mat_thm = | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (remove_column n) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in | |
mat_thm';; | |
let SETIFY_CONV mat_thm = | |
let _,pols,_ = dest_interpmat(concl mat_thm) in | |
let pols' = dest_list pols in | |
let sols = setify (dest_list pols) in | |
let indices = map (fun p -> try index p sols with _ -> failwith "SETIFY: no index") pols' in | |
let subtract_cols = subtract_index (get_repeats indices) in | |
rev_itlist REMOVE_COLUMN subtract_cols mat_thm;; | |
(* | |
SETIFY_CONV | |
(ASSUME `interpmat [] [(\x. x + &1); (\x. x + &1); (\x. x + &2); (\x. x + &3); (\x. x + &1); (\x. x + &2)][[Pos; Pos; Pos; Pos; Neg; Zero]]`) | |
*) | |
(* | |
let duplicate_column i j isigns_thm = | |
let thms = interpsigns_thms2 isigns_thm in | |
let col = ith i thms in | |
let l,r = chop_list j thms in | |
let thms' = l @ (col :: r) in | |
mk_interpsigns thms';; | |
let DUPLICATE_COLUMN i j mat_thm = | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (duplicate_column i j) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in | |
mat_thm';; | |
*) | |
let duplicate_columns new_cols isigns_thm = | |
let thms = interpsigns_thms2 isigns_thm in | |
let thms' = map (fun i -> el i thms) new_cols in | |
mk_interpsigns thms';; | |
let DUPLICATE_COLUMNS mat_thm ls = | |
if ls = [] then if mat_thm = empty_mat then empty_mat else failwith "empty duplication list" else | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (duplicate_columns ls) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in | |
mat_thm';; | |
let DUPLICATE_COLUMNS mat_thm ls = | |
let start_time = Sys.time() in | |
let res = DUPLICATE_COLUMNS mat_thm ls in | |
duplicate_columns_timer +.= (Sys.time() -. start_time); | |
res;; | |
let UNMONICIZE_ISIGN vars monic_thm isign_thm = | |
let _,_,sign = dest_interpsign isign_thm in | |
let const = (fst o dest_mult o lhs o concl) monic_thm in | |
let const_thm = SIGN_CONST const in | |
let op,_,_ = get_binop (concl const_thm) in | |
let mp_thm = | |
if op = rgt then | |
if sign = spos_tm then gtpos | |
else if sign = sneg_tm then gtneg | |
else if sign = szero_tm then gtzero | |
else failwith "bad sign" | |
else if op = rlt then | |
if sign = spos_tm then ltpos | |
else if sign = sneg_tm then ltneg | |
else if sign = szero_tm then ltzero | |
else failwith "bad sign" | |
else (failwith "bad op") in | |
let monic_thm' = GEN (hd vars) monic_thm in | |
MATCH_MPL[mp_thm;monic_thm';const_thm;isign_thm];; | |
let UNMONICIZE_ISIGNS vars monic_thms isigns_thm = | |
let isign_thms = interpsigns_thms2 isigns_thm in | |
let isign_thms' = map2 (UNMONICIZE_ISIGN vars) monic_thms isign_thms in | |
mk_interpsigns isign_thms';; | |
let UNMONICIZE_MAT vars monic_thms mat_thm = | |
if monic_thms = [] then mat_thm else | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let consts = map (fst o dest_mult o lhs o concl) monic_thms in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (UNMONICIZE_ISIGNS vars monic_thms) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in | |
mat_thm';; | |
let UNMONICIZE_MAT vars monic_thms mat_thm = | |
let start_time = Sys.time() in | |
let res = UNMONICIZE_MAT vars monic_thms mat_thm in | |
unmonicize_mat_timer +.= (Sys.time() -. start_time); | |
res;; | |
(* {{{ Examples *) | |
(* | |
let vars,monic_thms,mat_thm = | |
[], [], empty_mat | |
let monic_thm = hd monic_thms | |
length isigns_thms | |
MONIC_CONV [rx] `&1 + x * (&1 + x * (&1 + x * &7))` | |
let isign_thm = hd isign_thms | |
let isigns_thm = hd isigns_thms | |
mk_interpsigns [TRUTH];; | |
let ls = [0;1;2;0;1;2] | |
let mat_thm,ls = empty_mat,[] | |
1,3, | |
DUPLICATE_COLUMNS | |
(ASSUME `interpmat [] [(\x. x + &1); (\x. x + &1); (\x. x + &2); (\x. x + &3); (\x. x + &1); (\x. x + &2)][[Pos; Pos; Pos; Pos; Neg; Zero]]`) | |
[5] | |
duplicate_columns [] (ASSUME `interpsigns [] (\x. T) []`) | |
let new_cols, isigns_thm = [],(ASSUME `interpsigns [] (\x. T) []`) | |
let isigns_thm = hd isigns_thms | |
*) | |
(* }}} *) | |
let SWAP_HEAD_COL_ROW i isigns_thm = | |
let s_thms = interpsigns_thms2 isigns_thm in | |
let s_thms' = insertat i (hd s_thms) (tl s_thms) in | |
mk_interpsigns s_thms';; | |
let SWAP_HEAD_COL i mat_thm = | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (SWAP_HEAD_COL_ROW i) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
mk_interpmat_thm rol_thm all_thm';; | |
let SWAP_HEAD_COL i mat_thm = | |
let start_time = Sys.time() in | |
let res = SWAP_HEAD_COL i mat_thm in | |
swap_head_col_timer +.= (Sys.time() -. start_time); | |
res;; | |
let LENGTH_CONV = | |
let alength_tm = `LENGTH:(A list) -> num` in | |
fun tm -> | |
try | |
let ty = type_of tm in | |
let lty,[cty] = dest_type ty in | |
if lty <> "list" then failwith "LENGTH_CONV: not a list" else | |
let ltm = mk_comb(inst[cty,aty] alength_tm,tm) in | |
let lthm = REWRITE_CONV[LENGTH] ltm in | |
MATCH_MP main_lem000 lthm | |
with _ -> failwith "LENGTH_CONV";; | |
let LAST_NZ_CONV = | |
let alast_tm = `LAST:(A list) -> A` in | |
fun nz_thm tm -> | |
try | |
let ty = type_of tm in | |
let lty,[cty] = dest_type ty in | |
if lty <> "list" then failwith "LAST_NZ_CONV: not a list" else | |
let ltm = mk_comb(inst[cty,aty] alast_tm,tm) in | |
let lthm = REWRITE_CONV[LAST;NOT_CONS_NIL] ltm in | |
MATCH_MPL[main_lem001;nz_thm;lthm] | |
with _ -> failwith "LAST_NZ_CONV";; | |
let rec first f l = | |
match l with | |
[] -> failwith "first" | |
| h::t -> if can f h then f h else first f t;; | |
let NEQ_RULE thm = | |
let thms = CONJUNCTS main_lem002 in | |
first (C MATCH_MP thm) thms;; | |
(* | |
NEQ_CONV (ARITH_RULE `~(&11 <= &2)`) | |
*) | |
let NORMAL_LIST_CONV nz_thm tm = | |
let nz_thm' = NEQ_RULE nz_thm in | |
let len_thm = LENGTH_CONV tm in | |
let last_thm = LAST_NZ_CONV nz_thm' tm in | |
let cthm = CONJ len_thm last_thm in | |
MATCH_EQ_MP (GSYM (REWRITE_RULE[GSYM NEQ] NORMAL_ID)) cthm;; | |
(* | |
|- poly_diff [&0; &0; &0 + a * &1] = [&0; &0 + a * &2] | |
let tm = `poly_diff [&0; &0 + a * &1]` | |
*) | |
let pdiff_tm = `poly_diff`;; | |
let GEN_POLY_DIFF_CONV vars tm = | |
let thm1 = POLY_ENLIST_CONV vars tm in | |
let l,x = dest_poly (rhs (concl thm1)) in | |
let thm2 = CANON_POLY_DIFF_CONV (mk_comb(pdiff_tm,l)) in | |
let thm3 = CONV_RULE (RAND_CONV (LIST_CONV (POLYNATE_CONV vars))) thm2 in | |
thm3;; | |
(* | |
if \x. p = \x. q, where \x. p is the leading polynomial | |
replace p by q in mat_thm, | |
*) | |
(* | |
let peq,mat_thm = !rppeq,!rpmat | |
*) | |
let rppeq,rpmat = ref TRUTH,ref TRUTH;; | |
let REPLACE_POL = | |
let imat_tm = `interpmat` in | |
fun peq mat_thm -> | |
rppeq := peq; | |
rpmat := mat_thm; | |
let pts,pols,sgnll = dest_interpmat (concl mat_thm) in | |
let rep_p = lhs(concl peq) in | |
let i = try index rep_p (dest_list pols) with _ -> failwith "REPLACE_POL: index" in | |
let thm1 = EL_CONV (fun x -> GEN_REWRITE_CONV I [peq] x) i pols in | |
end_itlist (C (curry MK_COMB)) (rev [REFL imat_tm;REFL pts;thm1;REFL sgnll]);; | |
let REPLACE_POL peq mat_thm = | |
let start_time = Sys.time() in | |
let res = REPLACE_POL peq mat_thm in | |
replace_pol_timer +.= (Sys.time() -. start_time); | |
res;; | |
(* {{{ Examples *) | |
(* | |
let peq,mat_thm = | |
ASSUME `(\x. &0) = | |
(\x. &0 + a * ((&0 + b * (&0 + b * -- &1)) + a * (&0 + c * &4)))`, | |
ASSUME `interpmat [x_44] [\x. (&0 + b * &1) + x * (&0 + a * &2); \x. &0] | |
[[Pos; Zero]; [Zero; Zero]; [Neg; Zero]]` | |
let peq = ASSUME `(\x. &1 + x * (&1 + x * (&1 + x * &1))) = (\x. &1 + x)` | |
REPLACE_POL peq mat_thm | |
is_constant [`y:real`] `&1 + x * -- &1` | |
let vars,pols,cont,sgns,ex_thms = | |
[`c:real`; `b:real`; `a:real`], | |
[`&0 + c * &1`], | |
(fun x y -> x), | |
[ASSUME `&0 + b * (&0 + b * -- &1) = &0`; | |
ASSUME ` &0 + b * (&0 + b * (&0 + a * -- &1)) = &0`; | |
ASSUME `&0 + a * (&0 + a * &1) = &0`;ASSUME `&0 + b * &1 = &0`; | |
ASSUME `&0 + a * &1 = &0`; ASSUME ` &1 > &0`], | |
[] | |
*) | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Factoring *) | |
(* ---------------------------------------------------------------------- *) | |
let UNFACTOR_ISIGN vars xsign_thm pol isign_thm = | |
let x = hd vars in | |
let k,pol' = weakfactor x pol in | |
if k = 0 then isign_thm else | |
let fact_thm = GEN x (GSYM (WEAKFACTOR_CONV x pol)) in | |
let par_thm = PARITY_CONV (mk_small_numeral k) in | |
let _,_,xsign = dest_interpsign xsign_thm in | |
let _,_,psign = dest_interpsign isign_thm in | |
let parity,_ = dest_comb (concl par_thm) in | |
if xsign = spos_tm then | |
let mp_thm = | |
if psign = spos_tm then factor_pos_pos | |
else if psign = sneg_tm then factor_pos_neg | |
else if psign = szero_tm then factor_pos_zero | |
else failwith "bad sign" in | |
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm]) in | |
MATCH_MP ret fact_thm | |
else if xsign = szero_tm then | |
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in | |
let mp_thm = | |
if psign = spos_tm then factor_zero_pos | |
else if psign = sneg_tm then factor_zero_neg | |
else if psign = szero_tm then factor_zero_zero | |
else failwith "bad sign" in | |
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;k_thm]) in | |
MATCH_MP ret fact_thm | |
else if xsign = sneg_tm && parity = even_tm then | |
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in | |
let mp_thm = | |
if psign = spos_tm then factor_neg_even_pos | |
else if psign = sneg_tm then factor_neg_even_neg | |
else if psign = szero_tm then factor_neg_even_zero | |
else failwith "bad sign" in | |
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;par_thm;k_thm]) in | |
MATCH_MP ret fact_thm | |
else if xsign = sneg_tm && parity = odd_tm then | |
let k_thm = prove(mk_neg(mk_eq(mk_small_numeral k,nzero)),ARITH_TAC) in | |
let mp_thm = | |
if psign = spos_tm then factor_neg_odd_pos | |
else if psign = sneg_tm then factor_neg_odd_neg | |
else if psign = szero_tm then factor_neg_odd_zero | |
else failwith "bad sign" in | |
let ret = BETA_RULE(MATCH_MPL[mp_thm;xsign_thm;isign_thm;par_thm;k_thm]) in | |
MATCH_MP ret fact_thm | |
else failwith "bad something...";; | |
(* {{{ Examples *) | |
(* | |
let vars,xsign_thm,pol,isign_thm = | |
[ry;rx], | |
`interpsign (\x. x < x1) (\x. x) Pos`, | |
ASSUME `interpsign (\x. x < x_254) (\y. &0 + y * &1) Neg` | |
`\x. &0 + x * (&4 + x * &6)`, | |
ASSUME `interpsign (\x. x < x1) (\x. &4 + x * &6) Pos` | |
let xsign_thm,pol,isign_thm = | |
ASSUME `interpsign (\x. x < x1) (\x. x) Pos`, | |
`\x. &0 + x * (&4 + x * &6)`, | |
ASSUME `interpsign (\x. x < x1) (\x. &4 + x * &6) Pos` | |
*) | |
(* }}} *) | |
let UNFACTOR_ISIGNS vars pols isigns_thm = | |
let isign_thms = interpsigns_thms2 isigns_thm in | |
let isign_thms' = map2 (UNFACTOR_ISIGN vars (hd isign_thms)) pols (tl isign_thms) in | |
mk_interpsigns isign_thms';; | |
let UNFACTOR_MAT vars pols mat_thm = | |
let rol_thm,all_thm = interpmat_thms mat_thm in | |
let ints,part,signs = dest_all2 (concl all_thm) in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb part)) in | |
let isigns_thms = CONJUNCTS (REWRITE_RULE[ALL2;part_thm] all_thm) in | |
let isigns_thms' = map (UNFACTOR_ISIGNS vars pols) isigns_thms in | |
let all_thm' = mk_all2_interpsigns part_thm isigns_thms' in | |
let all_thm'' = REWRITE_RULE[GSYM part_thm] all_thm' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm'' in | |
mat_thm';; | |
let UNFACTOR_MAT vars pols mat_thm = | |
let start_time = Sys.time() in | |
let res = UNFACTOR_MAT vars pols mat_thm in | |
unfactor_mat_timer +.= (Sys.time() -. start_time); | |
res;; | |
(* {{{ Examples *) | |
(* | |
#untrace UNFACTOR_ISIGN | |
let isigns_thm = el 0 isigns_thms | |
UNFACTOR_ISIGNS pols isigns_thm | |
let isign_thm = el 1 isign_thm | |
pols | |
let isigns_thms' = map (UNFACTOR_ISIGNS pols) isigns_thms in | |
let xsign_thm = hd isign_thms | |
let xsign_thm = ASSUME `interpsign (\x. x < x1) (\x. x) Neg` | |
let isign_thm = hd (tl isign_thms) | |
let pol = hd pols | |
let pol = `\x. &0 + x * (&0 + x * (&0 + x * (&0 + y * &1)))` | |
let isigns_thm = hd isigns_thms | |
let vars = [rx;ry;rz] | |
let pols = | |
[`\x. &0 + x * (&0 + x * (&0 + y * &1))`; `\x. &0 + x * (&4 + x * &6)`; `\x. &3 + x * (&6 + x * &9)`; | |
`\x. &0 + x * (&0 + x * (&0 + x * (&0 + z * &1)))`; `\x. -- &4 + x * (&0 + x * &1)`] | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. x; \x. &0 + y * &1; \x. &4 + x * &6; \x. &3 + x * (&6 + x * &9); | |
\x. &0 + z * &1; \x. -- &4 + x * (&0 + x * &1)] | |
[[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Neg; Pos; Zero; Zero; Neg; Neg]; | |
[Neg; Pos; Neg; Pos; Neg; Neg]; | |
[Neg; Pos; Neg; Pos; Neg; Zero]; | |
[Neg; Pos; Neg; Pos; Neg; Pos]; | |
[Zero; Pos; Neg; Pos; Zero; Pos]; | |
[Pos; Pos; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Neg; Pos; Pos; Pos]; | |
[Pos; Neg; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Zero; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos; Pos; Pos]]` | |
UNFACTOR_MAT pols mat_thm | |
*) | |
(* }}} *) | |
let message_time s f x = | |
report s; | |
time f x;; | |
(* ---------------------------------------------------------------------- *) | |
(* Matrix *) | |
(* ---------------------------------------------------------------------- *) | |
let matrix_count,splitzero_count,splitsigns_count,monicize_count = ref 0,ref 0,ref 0,ref 0;; | |
let reset_counts() = matrix_count := 0;splitzero_count := 0;splitsigns_count := 0;monicize_count := 0;; | |
let print_counts() = !matrix_count,!splitzero_count,!splitsigns_count,!monicize_count;; | |
(* | |
let vars,dun,pols,cont,sgns,ex_thms,fm = !szvars,!szdun,!szpols,!szcont,!szsgns,!szex_thms,!szfm | |
*) | |
let rec MATRIX vars pols cont sgns ex_thms fm = | |
incr matrix_count; | |
if pols = [] then TRAPOUT cont empty_mat [] fm else | |
if exists (is_constant vars) pols then | |
let p = find (is_constant vars) pols in | |
let i = try index p pols with _ -> failwith "MATRIX: no such pol" in | |
let pols1,pols2 = chop_list i pols in | |
let pols' = pols1 @ tl pols2 in | |
let cont' = MATINSERT vars i (FINDSIGN vars sgns p) cont in | |
MATRIX vars pols' cont' sgns ex_thms fm | |
else | |
let kqs = map (weakfactor (hd vars)) pols in | |
if exists (fun (k,q) -> k <> 0 && not(is_constant vars q)) kqs then | |
let pols' = poly_var(hd vars) :: map snd kqs in | |
let ks = map fst kqs in | |
let cont' mat_thm ex_thms = cont (UNFACTOR_MAT vars pols mat_thm) ex_thms in | |
MATRIX vars pols' cont' sgns ex_thms fm | |
else | |
let d = itlist (max o degree_ vars) pols (-1) in | |
let p = find (fun p -> degree_ vars p = d) pols in | |
let pl_thm = POLY_ENLIST_CONV vars p in | |
let pl = rhs(concl pl_thm) in | |
let l,x = dest_poly pl in | |
let pdiff_thm = GEN_POLY_DIFF_CONV vars p in | |
let p'l = rhs (concl pdiff_thm) in | |
let p' = mk_comb(mk_comb(poly_tm,p'l),hd vars) in | |
let p'thm = (POLY_DELIST_CONV THENC (POLYNATE_CONV vars)) p' in | |
let p'c = rhs (concl p'thm) in | |
let hdp' = last (dest_list p'l) in | |
let sign_thm = FINDSIGN vars sgns hdp' in | |
let normal_thm = NORMAL_LIST_CONV sign_thm p'l in | |
let i = try index p pols with _ -> failwith "MATRIX: no such pol1" in | |
let qs = let p1,p2 = chop_list i pols in p'c::p1 @ tl p2 in | |
let gs,div_thms = unzip (map (PDIVIDES vars sgns p) qs) in | |
let cont' mat_thm = cont (SWAP_HEAD_COL i mat_thm) in | |
let dedcont mat_thm ex_thms = | |
DEDMATRIX vars sgns div_thms pdiff_thm normal_thm cont' mat_thm ex_thms in | |
SPLITZERO vars qs gs dedcont sgns ex_thms fm | |
and SPLITZERO vars dun pols cont sgns ex_thms fm = | |
incr splitzero_count; | |
match pols with | |
[] -> SPLITSIGNS vars [] dun cont sgns ex_thms fm | |
| p::ops -> | |
if p = rzero then | |
let cont' mat_thm ex_thms = MATINSERT vars (length dun) (REFL rzero) cont mat_thm ex_thms in | |
SPLITZERO vars dun ops cont' sgns ex_thms fm | |
else | |
let hp = behead vars p in | |
let h = head vars p in | |
let nzcont = | |
let tmp = SPLITZERO vars (dun@[p]) ops cont in | |
fun sgns ex_thms -> tmp sgns ex_thms fm in | |
let zcont = | |
let tmp = SPLITZERO vars dun (hp :: ops) in | |
fun sgns ex_thms -> | |
let zthm = FINDSIGN vars sgns h in | |
let b_thm = GSYM (BEHEAD vars zthm p) in | |
let lam_thm = ABS (hd vars) b_thm in | |
let cont' mat_thm ex_thms = | |
let mat_thm' = REPLACE_POL (lam_thm) mat_thm in | |
let mat_thm'' = MATCH_EQ_MP mat_thm' mat_thm in | |
cont mat_thm'' ex_thms in | |
tmp cont' sgns ex_thms fm in | |
SPLIT_ZERO (tl vars) sgns (head vars p) zcont nzcont ex_thms | |
and SPLITSIGNS vars dun pols cont sgns ex_thms fm = | |
incr splitsigns_count; | |
match pols with | |
[] -> MONICIZE vars dun cont sgns ex_thms fm | |
(* [] -> MATRIX vars dun cont sgns ex_thms fm *) | |
| p::ops -> | |
let cont' sgns ex_thms = SPLITSIGNS vars (dun@[p]) ops cont sgns ex_thms fm in | |
SPLIT_SIGN (tl vars) sgns (head vars p) cont' cont' ex_thms | |
and MONICIZE vars pols cont sgns ex_thms fm = | |
incr monicize_count; | |
let monic_thms = map (MONIC_CONV vars) pols in | |
let monic_pols = map (rhs o concl) monic_thms in | |
let sols = setify monic_pols in | |
let indices = map (fun p -> try index p sols with _ -> failwith "MONICIZE: no such pol") monic_pols in | |
let transform mat_thm = | |
let mat_thm' = DUPLICATE_COLUMNS mat_thm indices in | |
(* mat_thm' *) | |
UNMONICIZE_MAT vars monic_thms mat_thm' in | |
let cont' mat_thm ex_thms = cont (transform mat_thm) ex_thms in | |
MATRIX vars sols cont' sgns ex_thms fm | |
;; | |
(* {{{ Examples *) | |
(* | |
let vars,pols,sgns,ex_thms = [],[],[],[] | |
let mat_thm = mat_thm' | |
monic_thms | |
let vars = [rx] | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[(\x. &1 + x * (&2 + x * &3)); (\x. &2 + x * (&4 + x * &6)); \x. &3 + x * (&6 + x * &9); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); \x. &8 + x * &4] | |
[[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Zero; Zero; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Zero]; | |
[Pos; Pos; Neg; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos; Zero; Pos]; | |
[Pos; Pos; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Neg; Pos; Pos; Pos]; | |
[Pos; Neg; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Zero; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos; Pos; Pos]]` | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. -- &4 + x * (&0 + x * &1); \x. &2 + x * &1; \x. &2 + x * (-- &3 + x * &1); \x. &1 / &3 + x * (&2 / &3 + x * &1)] | |
[[Pos; Pos; Pos; Neg]; | |
[Pos; Pos; Zero; Zero]; | |
[Pos; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos]; | |
[Pos; Zero; Neg; Pos]; | |
[Pos; Neg; Neg; Pos]; | |
[Pos; Zero; Zero; Pos]; | |
[Pos; Pos; Pos; Pos]]`;; | |
let vars = [rx] | |
let pols = [`&1 + x * (&2 + x * &3)`;`&2 + x * (&4 + x * &6)`;`&3 + x * (&6 + x * &9)`; `&2 + x * (-- &3 + x * &1)`;`-- &4 + x * (&0 + x * &1)`;`&8 + x * &4`] | |
*) | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Set up RQE *) | |
(* ---------------------------------------------------------------------- *) | |
let polynomials tm = | |
let rec polynomials tm = | |
if tm = t_tm || tm = f_tm then [] | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
let _,l,r = get_binop tm in polynomials l @ polynomials r | |
else if is_neg tm then polynomials (dest_neg tm) | |
else if | |
can (dest_binop rlt) tm || | |
can (dest_binop rgt) tm || | |
can (dest_binop rle) tm || | |
can (dest_binop rge) tm || | |
can (dest_binop req) tm || | |
can (dest_binop rneq) tm then | |
let _,l,_ = get_binop tm in [l] | |
else failwith "not a fol atom" in | |
setify (polynomials tm);; | |
(* {{{ Examples *) | |
(* | |
let pols = polynomials `(poly [&1; -- &2] x > &0 ==> poly [&1; -- &2] x >= &0 /\ (poly [&8] x = &0)) /\ ~(poly [y] x <= &0)` | |
*) | |
(* }}} *) | |
let BASIC_REAL_QELIM_CONV vars fm = | |
let x,bod = dest_exists fm in | |
let pols = polynomials bod in | |
let cont mat_thm ex_thms = | |
let ex_thms' = sort (fun x y -> xterm_lt (fst y) (fst x)) ex_thms in | |
let comb_thm = COMBINE_TESTFORMS x mat_thm bod in | |
let comb_thm' = rev_itlist CHOOSE ex_thms' comb_thm in | |
comb_thm' in | |
let ret_thm = SPLITZERO (x::vars) [] pols cont empty_sgns [] fm in | |
PURE_REWRITE_RULE[NEQ] ret_thm;; | |
let REAL_QELIM_CONV fm = | |
reset_counts(); | |
((LIFT_QELIM_CONV POLYATOM_CONV (EVALC_CONV THENC SIMPLIFY_CONV) | |
BASIC_REAL_QELIM_CONV) THENC EVALC_CONV THENC SIMPLIFY_CONV) fm;; | |
(* ---------------------------------------------------------------------- *) | |
(* timers *) | |
(* ---------------------------------------------------------------------- *) | |