Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let aacons_tm = `CONS:A -> A list -> A list` ;; | |
let HD_CONV conv tm = | |
let h::rest = dest_list tm in | |
let ty = type_of h in | |
let thm = conv h in | |
let thm2 = REFL (mk_list(rest,ty)) in | |
let cs = inst [ty,aty] aacons_tm in | |
MK_COMB ((AP_TERM cs thm),thm2);; | |
let TL_CONV conv tm = | |
(* try *) | |
let h::t = dest_list tm in | |
let lty = type_of h in | |
let cs = inst [lty,aty] aacons_tm in | |
MK_COMB ((AP_TERM cs (REFL h)), (LIST_CONV conv (mk_list(t,lty)))) | |
(* with _ -> failwith "TL_CONV" *) | |
let rec EL_CONV conv i tm = | |
if i = 0 then HD_CONV conv tm | |
else | |
let h::t = dest_list tm in | |
let lty = type_of h in | |
let cs = inst [lty,aty] aacons_tm in | |
MK_COMB ((AP_TERM cs (REFL h)), (EL_CONV conv (i - 1) (mk_list(t,lty)))) | |
(* | |
let conv = (REWRITE_CONV[ARITH_RULE `x + x = &2 * x`]) | |
let tm = `[&5 + &5; &6 + &6; &7 + &7]` | |
HD_CONV conv tm | |
TL_CONV conv tm | |
HD_CONV(TL_CONV conv) tm | |
CONS_CONV conv tm | |
EL_CONV conv 0 tm | |
EL_CONV conv 1 tm | |
EL_CONV conv 2 tm | |
*) | |
let NOT_CONS = prove_by_refinement( | |
`!l. (~ ?(h:A) t. (l = CONS h t)) ==> (l = [])`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[list_CASES]; | |
]);; | |
(* }}} *) | |
let REMOVE = new_recursive_definition list_RECURSION | |
`(REMOVE x [] = []) /\ | |
(REMOVE x (CONS (h:A) t) = | |
let rest = REMOVE x t in | |
if x = h then rest else CONS h rest)`;; | |
let CHOP_LIST = new_recursive_definition num_RECURSION | |
`(CHOP_LIST 0 l = [],l) /\ | |
(CHOP_LIST (SUC n) l = | |
let a,b = CHOP_LIST n (TL l) in | |
CONS (HD l) a,b)`;; | |
let REM_NIL = prove( | |
`REMOVE x [] = []`, | |
MESON_TAC[REMOVE]);; | |
let REM_FALSE = prove_by_refinement( | |
`!x l. ~(MEM x (REMOVE x l))`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
LIST_INDUCT_TAC; | |
ASM_MESON_TAC[MEM;REM_NIL]; | |
CASES_ON `x = h`; | |
ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF]; | |
ASM_MESON_TAC[]; | |
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF]; | |
ASM_MESON_TAC[MEM]; | |
]);; | |
(* }}} *) | |
let MEM_REMOVE = prove_by_refinement( | |
`!x y z l. MEM x (REMOVE y l) ==> MEM x (REMOVE y (CONS z l))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT_N 3 STRIP_TAC; | |
CASES_ON `y = z`; | |
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF]; | |
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF]; | |
ASM_MESON_TAC[MEM]; | |
]);; | |
(* }}} *) | |
let REM_NEQ = prove_by_refinement( | |
`!x x1 l. MEM x l /\ ~(x = x1) ==> MEM x (REMOVE x1 l)`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC THEN STRIP_TAC; | |
LIST_INDUCT_TAC; | |
MESON_TAC[MEM]; | |
CASES_ON `x = h`; | |
POP_ASSUM SUBST1_TAC; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF;COND_CLAUSES;MEM]; | |
STRIP_TAC; | |
CLAIM `MEM x t`; | |
ASM_MESON_TAC[MEM]; | |
STRIP_TAC; | |
CLAIM `MEM x (REMOVE x1 t)`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
MATCH_MP_TAC MEM_REMOVE; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let LAST_SING = prove_by_refinement( | |
`!h. LAST [h] = h`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[LAST]; | |
]);; | |
(* }}} *) | |
let LAST_CONS = prove_by_refinement( | |
`!h t. ~(t = []) ==> (LAST (CONS h t) = LAST t)`, | |
(* {{{ Proof *) | |
[ | |
ASM_MESON_TAC[LAST]; | |
]);; | |
(* }}} *) | |
let LAST_CONS_CONS = prove_by_refinement( | |
`!h1 h2 t. ~(t = []) ==> (LAST (CONS h1 (CONS h2 t)) = LAST (CONS h1 t))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[LAST;NOT_CONS_NIL]; | |
MESON_TAC[LAST;NOT_CONS_NIL;COND_CLAUSES]; | |
]);; | |
(* }}} *) | |
let HD_APPEND = prove_by_refinement( | |
`!h t l. HD (APPEND (CONS h t) l) = h`, | |
(* {{{ Proof *) | |
[ | |
ASM_MESON_TAC[HD;APPEND]; | |
]);; | |
(* }}} *) | |
let LENGTH_0 = prove_by_refinement( | |
`!l. (LENGTH l = 0) <=> (l = [])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LENGTH]; | |
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;ARITH_RULE `~(0 = SUC n)`]; | |
]);; | |
(* }}} *) | |
let LENGTH_1 = prove_by_refinement( | |
`!l. (LENGTH l = 1) <=> ?x. l = [x]`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
EQ_TAC; | |
MESON_TAC[LENGTH;ARITH_RULE `~(1 = 0)`]; | |
MESON_TAC[NOT_CONS_NIL]; | |
EQ_TAC; | |
REWRITE_TAC[LENGTH;ARITH_RULE `~(0 = 1)`]; | |
REWRITE_TAC[LENGTH]; | |
STRIP_TAC; | |
CLAIM `LENGTH t = 0`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `t = []`; | |
ASM_MESON_TAC[LENGTH_0]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
ASM_MESON_TAC[LENGTH;ONE]; | |
]);; | |
(* }}} *) | |
let LIST_TRI = prove_by_refinement( | |
`!p. (p = []) \/ (?x. p = [x:A]) \/ (?x y t. p = CONS x (CONS y t))`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
DISJ_CASES_TAC (ISPEC `p:A list` list_CASES); | |
ASM_REWRITE_TAC[]; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
DISJ_CASES_TAC (ISPEC `t:A list` list_CASES); | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let LENGTH_PAIR = prove_by_refinement( | |
`!p. (LENGTH p = 2) <=> ?h t. p = [h:A; t]`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC THEN EQ_TAC; | |
STRIP_TAC; | |
MP_TAC (ISPEC `p:A list` list_CASES); | |
STRIP_TAC; | |
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(2 = 0)`]; | |
MP_TAC (ISPEC `t:A list` list_CASES); | |
STRIP_TAC; | |
ASM_MESON_TAC[LENGTH_1;ARITH_RULE `~(1 = 2)`]; | |
MP_TAC (ISPEC `t':A list` list_CASES); | |
STRIP_TAC; | |
EXISTS_TAC `h:A`; | |
EXISTS_TAC `h':A`; | |
ASM_MESON_TAC[]; | |
CLAIM `p = CONS h (CONS h' (CONS h'' t''))`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `2 < LENGTH p`; | |
POP_ASSUM SUBST1_TAC; | |
REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
ASM_MESON_TAC[LT_REFL]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let LENGTH_SING = prove_by_refinement( | |
`!p. (LENGTH p = 1) <=> ?h. p = [h:A]`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC THEN EQ_TAC; | |
STRIP_TAC; | |
MP_TAC (ISPEC `p:A list` list_CASES); | |
STRIP_TAC; | |
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(1 = 0)`]; | |
MP_TAC (ISPEC `t:A list` list_CASES); | |
STRIP_TAC; | |
EXISTS_TAC `h:A`; | |
ASM_MESON_TAC[]; | |
CLAIM `p = CONS h (CONS h' t')`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `1 < LENGTH p`; | |
POP_ASSUM SUBST1_TAC; | |
REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[LENGTH;]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let TL_NIL = prove_by_refinement( | |
`!l. ~(l = []) ==> ((TL l = []) <=> ?x. l = [x])`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC THEN EQ_TAC; | |
CLAIM `?h t. l = CONS h t`; | |
ASM_MESON_TAC[list_CASES]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[TL]; | |
ASM_MESON_TAC !LIST_REWRITES; | |
ASM_MESON_TAC !LIST_REWRITES; | |
]);; | |
(* }}} *) | |
let LAST_TL = prove_by_refinement( | |
`!l. ~(l = []) /\ ~(TL l = []) ==> (LAST (TL l) = LAST l)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
REWRITE_TAC[TL;LAST]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
]);; | |
(* }}} *) | |
let LENGTH_TL = prove_by_refinement( | |
`!l. ~(l = []) /\ ~(TL l = []) ==> (LENGTH (TL l) = PRE(LENGTH l))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
LIST_SIMP_TAC; | |
NUM_SIMP_TAC; | |
]);; | |
(* }}} *) | |
let LENGTH_NZ = prove_by_refinement( | |
`!p. 0 < LENGTH p <=> ~(p = [])`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
EQ_TAC; | |
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;LT_REFL]; | |
REWRITE_TAC[LENGTH;NOT_CONS_NIL;LT_REFL;NOT_NIL]; | |
STRIP_TAC THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |