Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /rqe_list.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.79 kB
let aacons_tm = `CONS:A -> A list -> A list` ;;
let HD_CONV conv tm =
let h::rest = dest_list tm in
let ty = type_of h in
let thm = conv h in
let thm2 = REFL (mk_list(rest,ty)) in
let cs = inst [ty,aty] aacons_tm in
MK_COMB ((AP_TERM cs thm),thm2);;
let TL_CONV conv tm =
(* try *)
let h::t = dest_list tm in
let lty = type_of h in
let cs = inst [lty,aty] aacons_tm in
MK_COMB ((AP_TERM cs (REFL h)), (LIST_CONV conv (mk_list(t,lty))))
(* with _ -> failwith "TL_CONV" *)
let rec EL_CONV conv i tm =
if i = 0 then HD_CONV conv tm
else
let h::t = dest_list tm in
let lty = type_of h in
let cs = inst [lty,aty] aacons_tm in
MK_COMB ((AP_TERM cs (REFL h)), (EL_CONV conv (i - 1) (mk_list(t,lty))))
(*
let conv = (REWRITE_CONV[ARITH_RULE `x + x = &2 * x`])
let tm = `[&5 + &5; &6 + &6; &7 + &7]`
HD_CONV conv tm
TL_CONV conv tm
HD_CONV(TL_CONV conv) tm
CONS_CONV conv tm
EL_CONV conv 0 tm
EL_CONV conv 1 tm
EL_CONV conv 2 tm
*)
let NOT_CONS = prove_by_refinement(
`!l. (~ ?(h:A) t. (l = CONS h t)) ==> (l = [])`,
(* {{{ Proof *)
[
MESON_TAC[list_CASES];
]);;
(* }}} *)
let REMOVE = new_recursive_definition list_RECURSION
`(REMOVE x [] = []) /\
(REMOVE x (CONS (h:A) t) =
let rest = REMOVE x t in
if x = h then rest else CONS h rest)`;;
let CHOP_LIST = new_recursive_definition num_RECURSION
`(CHOP_LIST 0 l = [],l) /\
(CHOP_LIST (SUC n) l =
let a,b = CHOP_LIST n (TL l) in
CONS (HD l) a,b)`;;
let REM_NIL = prove(
`REMOVE x [] = []`,
MESON_TAC[REMOVE]);;
let REM_FALSE = prove_by_refinement(
`!x l. ~(MEM x (REMOVE x l))`,
(* {{{ Proof *)
[
STRIP_TAC;
LIST_INDUCT_TAC;
ASM_MESON_TAC[MEM;REM_NIL];
CASES_ON `x = h`;
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[MEM];
]);;
(* }}} *)
let MEM_REMOVE = prove_by_refinement(
`!x y z l. MEM x (REMOVE y l) ==> MEM x (REMOVE y (CONS z l))`,
(* {{{ Proof *)
[
REPEAT_N 3 STRIP_TAC;
CASES_ON `y = z`;
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF];
ASM_MESON_TAC[MEM];
]);;
(* }}} *)
let REM_NEQ = prove_by_refinement(
`!x x1 l. MEM x l /\ ~(x = x1) ==> MEM x (REMOVE x1 l)`,
(* {{{ Proof *)
[
STRIP_TAC THEN STRIP_TAC;
LIST_INDUCT_TAC;
MESON_TAC[MEM];
CASES_ON `x = h`;
POP_ASSUM SUBST1_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[REMOVE;LET_DEF;LET_END_DEF;COND_CLAUSES;MEM];
STRIP_TAC;
CLAIM `MEM x t`;
ASM_MESON_TAC[MEM];
STRIP_TAC;
CLAIM `MEM x (REMOVE x1 t)`;
ASM_MESON_TAC[];
STRIP_TAC;
MATCH_MP_TAC MEM_REMOVE;
FIRST_ASSUM MATCH_ACCEPT_TAC;
]);;
(* }}} *)
let LAST_SING = prove_by_refinement(
`!h. LAST [h] = h`,
(* {{{ Proof *)
[
MESON_TAC[LAST];
]);;
(* }}} *)
let LAST_CONS = prove_by_refinement(
`!h t. ~(t = []) ==> (LAST (CONS h t) = LAST t)`,
(* {{{ Proof *)
[
ASM_MESON_TAC[LAST];
]);;
(* }}} *)
let LAST_CONS_CONS = prove_by_refinement(
`!h1 h2 t. ~(t = []) ==> (LAST (CONS h1 (CONS h2 t)) = LAST (CONS h1 t))`,
(* {{{ Proof *)
[
REWRITE_TAC[LAST;NOT_CONS_NIL];
MESON_TAC[LAST;NOT_CONS_NIL;COND_CLAUSES];
]);;
(* }}} *)
let HD_APPEND = prove_by_refinement(
`!h t l. HD (APPEND (CONS h t) l) = h`,
(* {{{ Proof *)
[
ASM_MESON_TAC[HD;APPEND];
]);;
(* }}} *)
let LENGTH_0 = prove_by_refinement(
`!l. (LENGTH l = 0) <=> (l = [])`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[LENGTH];
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;ARITH_RULE `~(0 = SUC n)`];
]);;
(* }}} *)
let LENGTH_1 = prove_by_refinement(
`!l. (LENGTH l = 1) <=> ?x. l = [x]`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
EQ_TAC;
MESON_TAC[LENGTH;ARITH_RULE `~(1 = 0)`];
MESON_TAC[NOT_CONS_NIL];
EQ_TAC;
REWRITE_TAC[LENGTH;ARITH_RULE `~(0 = 1)`];
REWRITE_TAC[LENGTH];
STRIP_TAC;
CLAIM `LENGTH t = 0`;
POP_ASSUM MP_TAC THEN ARITH_TAC;
STRIP_TAC;
CLAIM `t = []`;
ASM_MESON_TAC[LENGTH_0];
STRIP_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
STRIP_TAC;
ASM_MESON_TAC[LENGTH;ONE];
]);;
(* }}} *)
let LIST_TRI = prove_by_refinement(
`!p. (p = []) \/ (?x. p = [x:A]) \/ (?x y t. p = CONS x (CONS y t))`,
(* {{{ Proof *)
[
STRIP_TAC;
DISJ_CASES_TAC (ISPEC `p:A list` list_CASES);
ASM_REWRITE_TAC[];
POP_ASSUM MP_TAC THEN STRIP_TAC;
DISJ_CASES_TAC (ISPEC `t:A list` list_CASES);
ASM_MESON_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let LENGTH_PAIR = prove_by_refinement(
`!p. (LENGTH p = 2) <=> ?h t. p = [h:A; t]`,
(* {{{ Proof *)
[
STRIP_TAC THEN EQ_TAC;
STRIP_TAC;
MP_TAC (ISPEC `p:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(2 = 0)`];
MP_TAC (ISPEC `t:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_1;ARITH_RULE `~(1 = 2)`];
MP_TAC (ISPEC `t':A list` list_CASES);
STRIP_TAC;
EXISTS_TAC `h:A`;
EXISTS_TAC `h':A`;
ASM_MESON_TAC[];
CLAIM `p = CONS h (CONS h' (CONS h'' t''))`;
ASM_MESON_TAC[];
STRIP_TAC;
CLAIM `2 < LENGTH p`;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[LENGTH];
ARITH_TAC;
ASM_MESON_TAC[LT_REFL];
STRIP_TAC;
ASM_REWRITE_TAC[LENGTH];
ARITH_TAC;
]);;
(* }}} *)
let LENGTH_SING = prove_by_refinement(
`!p. (LENGTH p = 1) <=> ?h. p = [h:A]`,
(* {{{ Proof *)
[
STRIP_TAC THEN EQ_TAC;
STRIP_TAC;
MP_TAC (ISPEC `p:A list` list_CASES);
STRIP_TAC;
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(1 = 0)`];
MP_TAC (ISPEC `t:A list` list_CASES);
STRIP_TAC;
EXISTS_TAC `h:A`;
ASM_MESON_TAC[];
CLAIM `p = CONS h (CONS h' t')`;
ASM_MESON_TAC[];
STRIP_TAC;
CLAIM `1 < LENGTH p`;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[LENGTH];
ARITH_TAC;
ASM_REWRITE_TAC[];
ARITH_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[LENGTH;];
ARITH_TAC;
]);;
(* }}} *)
let TL_NIL = prove_by_refinement(
`!l. ~(l = []) ==> ((TL l = []) <=> ?x. l = [x])`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC THEN EQ_TAC;
CLAIM `?h t. l = CONS h t`;
ASM_MESON_TAC[list_CASES];
STRIP_TAC;
ASM_REWRITE_TAC[TL];
ASM_MESON_TAC !LIST_REWRITES;
ASM_MESON_TAC !LIST_REWRITES;
]);;
(* }}} *)
let LAST_TL = prove_by_refinement(
`!l. ~(l = []) /\ ~(TL l = []) ==> (LAST (TL l) = LAST l)`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[];
REWRITE_TAC[TL;LAST];
ASM_MESON_TAC[NOT_CONS_NIL];
]);;
(* }}} *)
let LENGTH_TL = prove_by_refinement(
`!l. ~(l = []) /\ ~(TL l = []) ==> (LENGTH (TL l) = PRE(LENGTH l))`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[];
REPEAT STRIP_TAC;
LIST_SIMP_TAC;
NUM_SIMP_TAC;
]);;
(* }}} *)
let LENGTH_NZ = prove_by_refinement(
`!p. 0 < LENGTH p <=> ~(p = [])`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
EQ_TAC;
ASM_MESON_TAC[LENGTH;NOT_CONS_NIL;LT_REFL];
REWRITE_TAC[LENGTH;NOT_CONS_NIL;LT_REFL;NOT_NIL];
STRIP_TAC THEN ASM_REWRITE_TAC[];
REWRITE_TAC[LENGTH];
ARITH_TAC;
]);;
(* }}} *)