Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let ACI_CONJ = | |
let rec build ths tm = | |
if is_conj tm then | |
let l,r = dest_conj tm in CONJ (build ths l) (build ths r) | |
else find (fun th -> concl th = tm) ths in | |
fun p p' -> | |
let cjs = CONJUNCTS(ASSUME p) and cjs' = CONJUNCTS(ASSUME p') in | |
let th = build cjs p' and th' = build cjs' p in | |
IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th');; | |
let QE_SIMPLIFY_CONV = | |
let NOT_EXISTS_UNIQUE_THM = prove | |
(`~(?!x. P x) <=> (!x. ~P x) \/ ?x x'. P x /\ P x' /\ ~(x = x')`, | |
REWRITE_TAC[EXISTS_UNIQUE_THM; DE_MORGAN_THM; NOT_EXISTS_THM] THEN | |
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; CONJ_ASSOC]) in | |
let tauts = | |
[TAUT `~(~p) <=> p`; | |
TAUT `~(p /\ q) <=> ~p \/ ~q`; | |
TAUT `~(p \/ q) <=> ~p /\ ~q`; | |
TAUT `~(p ==> q) <=> p /\ ~q`; | |
TAUT `p ==> q <=> ~p \/ q`; | |
NOT_FORALL_THM; | |
NOT_EXISTS_THM; | |
EXISTS_UNIQUE_THM; | |
NOT_EXISTS_UNIQUE_THM; | |
TAUT `~(p <=> q) <=> (p /\ ~q) \/ (~p /\ q)`; | |
TAUT `(p <=> q) <=> (p /\ q) \/ (~p /\ ~q)`; | |
TAUT `~(p /\ q \/ ~p /\ r) <=> p /\ ~q \/ ~p /\ ~r`] in | |
GEN_REWRITE_CONV TOP_SWEEP_CONV tauts;; | |
let OR_ASSOC = TAUT `(a \/ b) \/ c <=> a \/ b \/ c`;; | |
let forall_thm = prove(`!P. (!x. P x) <=> ~ (?x. ~ P x)`,MESON_TAC[]) | |
and or_exists_conv = PURE_REWRITE_CONV[OR_EXISTS_THM] | |
and triv_exists_conv = REWR_CONV EXISTS_SIMP | |
and push_exists_conv = REWR_CONV RIGHT_EXISTS_AND_THM | |
and not_tm = `(~)` | |
and or_tm = `(\/)` | |
and t_tm = `T` | |
and f_tm = `F`;; | |
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv = | |
let rec qelift_conv vars fm = | |
if fm = t_tm || fm = f_tm then REFL fm | |
else if is_neg fm then | |
let thm1 = qelift_conv vars (dest_neg fm) in | |
MK_COMB(REFL not_tm,thm1) | |
else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then | |
let (op,p,q) = get_binop fm in | |
let thm1 = qelift_conv vars p in | |
let thm2 = qelift_conv vars q in | |
MK_COMB(MK_COMB((REFL op),thm1),thm2) | |
else if is_forall fm then | |
let (x,p) = dest_forall fm in | |
let nex_thm = BETA_RULE (ISPEC (mk_abs(x,p)) forall_thm) in | |
let nex_thm' = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV x))) nex_thm in | |
let nex_thm'' = CONV_RULE (RAND_CONV (RAND_CONV (RAND_CONV (ALPHA_CONV x)))) nex_thm' in | |
let elim_thm = qelift_conv vars (mk_exists(x,mk_neg p)) in | |
TRANS nex_thm'' (MK_COMB (REFL not_tm,elim_thm)) | |
else if is_exists fm then | |
let (x,p) = dest_exists fm in | |
let thm1 = qelift_conv (x::vars) p in | |
let thm1a = MK_EXISTS x thm1 in | |
let thm1b = PURE_REWRITE_RULE[OR_ASSOC] thm1a in | |
let thm2 = nfn_conv (rhs(concl thm1)) in | |
let thm2a = MK_EXISTS x thm2 in | |
let thm2b = PURE_REWRITE_RULE[OR_ASSOC] thm2a in | |
let djs = disjuncts (rhs (concl thm2)) in | |
let djthms = map (qelim x vars) djs in | |
let thm3 = end_itlist | |
(fun thm1 thm2 -> MK_COMB(MK_COMB (REFL or_tm,thm1),thm2)) djthms in | |
let split_ex_thm = GSYM (or_exists_conv (lhs (concl thm3))) in | |
let thm3a = TRANS split_ex_thm thm3 in | |
TRANS (TRANS thm1b thm2b) thm3a | |
else | |
afn_conv vars fm | |
and qelim x vars p = | |
let cjs = conjuncts p in | |
let ycjs,ncjs = partition (mem x o frees) cjs in | |
if ycjs = [] then triv_exists_conv(mk_exists(x,p)) | |
else if ncjs = [] then qfn_conv vars (mk_exists(x,p)) else | |
let th1 = ACI_CONJ p (mk_conj(list_mk_conj ncjs,list_mk_conj ycjs)) in | |
let th2 = CONV_RULE (RAND_CONV push_exists_conv) (MK_EXISTS x th1) in | |
let t1,t2 = dest_comb (rand(concl th2)) in | |
TRANS th2 (AP_TERM t1 (qfn_conv vars t2)) in | |
fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;; | |
(* | |
let afn_conv,nfn_conv,qfn_conv = POLYATOM_CONV,(EVALC_CONV THENC SIMPLIFY_CONV),BASIC_REAL_QELIM_CONV | |
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv = | |
fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;; | |
let k0 = (TRANS thm1a thm2a) | |
let k1 = thm3a | |
let k2 = CONV_RULE (LAND_CONV (RAND_CONV (ALPHA_CONV `x:real`))) k1 | |
TRANS k0 k2 | |
let vars = [] | |
let fm,vars = !lqc_fm,!lqc_vars | |
let fm = `?x y z. x * y * z < &0` | |
let p = `~((&0 + y * (&0 + x * &1) = &0) <=> (&0 + x * &1 = &0) \/ (&0 + y * &1 = &0))` | |
#trace qelift_conv | |
#trace qelim | |
TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `(?z. z * y > &0) <=> F`) | |
MATCH_TRANS (ASSUME `T <=> (?x. x * y > &0)`) (ASSUME `?z. z * y > &0 <=> F`) | |
MATCH_EQ_MP (ASSUME `(?x. x * y > &0) <=> F`) (ASSUME `?z. z * y > &0`) | |
qelift_conv vars fm | |
let fm = `?x y. x * y = &0` | |
let fm = `!y. (x * y = &0) <=> (x = &0) \/ (y = &0)` | |
let fm = `?y. (x * y = &0) <=> (x = &0) \/ (y = &0)` | |
let fm = `?y. ~ ((x * y = &0) <=> (x = &0) \/ (y = &0))` | |
let fm = `?x. ~(!y. (x * y = &0) <=> (x = &0) \/ (y = &0))` | |
let vars = [ry;rx] | |
let vars = [rx] | |
let QELIM_DLO_CONV = | |
(LIFT_QELIM_CONV AFN_DLO_CONV ((CNNF_CONV LFN_DLO_CONV) THENC DNF_CONV) | |
(fun v -> DLOBASIC_CONV)) THENC (REWRITE_CONV[]);; | |
*) | |