Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Set-theoretic hierarchy for modelling HOL inside itself. *) | |
(* ========================================================================= *) | |
let INJ_LEMMA = prove | |
(`(!x y. (f x = f y) ==> (x = y)) <=> (!x y. (f x = f y) <=> (x = y))`, | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful to have a niceish "function update" notation. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|->",(12,"right"));; | |
let valmod = new_definition | |
`(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;; | |
let VALMOD = prove | |
(`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`, | |
REWRITE_TAC[valmod]);; | |
let VALMOD_BASIC = prove | |
(`!v x y. (x |-> y) v x = y`, | |
REWRITE_TAC[valmod]);; | |
let VALMOD_VALMOD_BASIC = prove | |
(`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let VALMOD_REPEAT = prove | |
(`!v x. (x |-> v(x)) v = v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let FORALL_VALMOD = prove | |
(`!x. (!v a. P((x |-> a) v)) = (!v. P v)`, | |
MESON_TAC[VALMOD_REPEAT]);; | |
let VALMOD_SWAP = prove | |
(`!v x y a b. | |
~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A dummy finite type inadequately modelling ":ind". *) | |
(* ------------------------------------------------------------------------- *) | |
let ind_model_tybij_th = | |
prove(`?x. x IN @s:num->bool. ~(s = {}) /\ FINITE s`, | |
MESON_TAC[MEMBER_NOT_EMPTY; IN_SING; FINITE_RULES]);; | |
let ind_model_tybij = | |
new_type_definition "ind_model" ("mk_ind","dest_ind") ind_model_tybij_th;; | |
(* ------------------------------------------------------------------------- *) | |
(* Introduce a type whose universe is "inaccessible" starting from *) | |
(* "ind_model". Since "ind_model" is finite, we can just use any *) | |
(* infinite set. In order to make "ind_model" infinite, we would need *) | |
(* a new axiom. In order to keep things generic we try to deduce *) | |
(* everything from this one uniform "axiom". Note that even in the *) | |
(* infinite case, this can still be a small set in ZF terms, not a real *) | |
(* inaccessible cardinal. *) | |
(* ------------------------------------------------------------------------- *) | |
(****** Here's what we'd do in the infinite case | |
new_type("I",0);; | |
let I_AXIOM = new_axiom | |
`UNIV:ind_model->bool <_c UNIV:I->bool /\ | |
(!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`;; | |
*******) | |
let inacc_tybij_th = prove | |
(`?x:num. x IN UNIV`,REWRITE_TAC[IN_UNIV]);; | |
let inacc_tybij = | |
new_type_definition "I" ("mk_I","dest_I") inacc_tybij_th;; | |
let I_AXIOM = prove | |
(`UNIV:ind_model->bool <_c UNIV:I->bool /\ | |
(!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`, | |
let lemma = prove | |
(`!s. s <_c UNIV:I->bool <=> FINITE s`, | |
GEN_TAC THEN REWRITE_TAC[FINITE_CARD_LT] THEN | |
MATCH_MP_TAC CARD_LT_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; le_c; IN_UNIV] THEN | |
MESON_TAC[inacc_tybij; IN_UNIV]) in | |
REWRITE_TAC[lemma; FINITE_POWERSET] THEN | |
SUBGOAL_THEN `UNIV = IMAGE mk_ind (@s. ~(s = {}) /\ FINITE s)` | |
SUBST1_TAC THENL | |
[MESON_TAC[EXTENSION; IN_IMAGE; IN_UNIV; ind_model_tybij]; | |
MESON_TAC[FINITE_IMAGE; NOT_INSERT_EMPTY; FINITE_RULES]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* I is infinite and therefore admits an injective pairing. *) | |
(* ------------------------------------------------------------------------- *) | |
let I_INFINITE = prove | |
(`INFINITE(UNIV:I->bool)`, | |
REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN | |
MP_TAC(ISPEC `{n | n < CARD(UNIV:I->bool) - 1}` (CONJUNCT2 I_AXIOM)) THEN | |
ASM_SIMP_TAC[CARD_LT_CARD; FINITE_NUMSEG_LT; FINITE_POWERSET] THEN | |
SIMP_TAC[CARD_NUMSEG_LT; CARD_POWERSET; FINITE_NUMSEG_LT] THEN | |
SUBGOAL_THEN `~(CARD(UNIV:I->bool) = 0)` MP_TAC THENL | |
[ASM_SIMP_TAC[CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; IN_UNIV]; ALL_TAC] THEN | |
SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 < n`; NOT_LT] THEN | |
MATCH_MP_TAC(ARITH_RULE `a - 1 < b ==> ~(a = 0) ==> a <= b`) THEN | |
SPEC_TAC(`CARD(UNIV:I->bool) - 1`,`n:num`) THEN POP_ASSUM(K ALL_TAC) THEN | |
INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN POP_ASSUM MP_TAC THEN | |
ARITH_TAC);; | |
let I_PAIR_EXISTS = prove | |
(`?f:I#I->I. !x y. (f x = f y) ==> (x = y)`, | |
SUBGOAL_THEN `UNIV:I#I->bool <=_c UNIV:I->bool` MP_TAC THENL | |
[ALL_TAC; REWRITE_TAC[le_c; IN_UNIV]] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
MP_TAC(MATCH_MP CARD_SQUARE_INFINITE I_INFINITE) THEN | |
MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; mul_c; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[PAIR]);; | |
let I_PAIR = REWRITE_RULE[INJ_LEMMA] | |
(new_specification ["I_PAIR"] I_PAIR_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* It also admits injections from "bool" and "ind_model". *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_BOOL_LT_I = prove | |
(`UNIV:bool->bool <_c UNIV:I->bool`, | |
REWRITE_TAC[GSYM CARD_NOT_LE] THEN | |
DISCH_TAC THEN MP_TAC I_INFINITE THEN REWRITE_TAC[INFINITE] THEN | |
SUBGOAL_THEN `FINITE(UNIV:bool->bool)` | |
(fun th -> ASM_MESON_TAC[th; CARD_LE_FINITE]) THEN | |
SUBGOAL_THEN `UNIV:bool->bool = {F,T}` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT] THEN MESON_TAC[]; | |
SIMP_TAC[FINITE_RULES]]);; | |
let I_BOOL_EXISTS = prove | |
(`?f:bool->I. !x y. (f x = f y) ==> (x = y)`, | |
MP_TAC(MATCH_MP CARD_LT_IMP_LE CARD_BOOL_LT_I) THEN | |
SIMP_TAC[lt_c; le_c; IN_UNIV]);; | |
let I_BOOL = REWRITE_RULE[INJ_LEMMA] | |
(new_specification ["I_BOOL"] I_BOOL_EXISTS);; | |
let I_IND_EXISTS = prove | |
(`?f:ind_model->I. !x y. (f x = f y) ==> (x = y)`, | |
MP_TAC(CONJUNCT1 I_AXIOM) THEN SIMP_TAC[lt_c; le_c; IN_UNIV]);; | |
let I_IND = REWRITE_RULE[INJ_LEMMA] | |
(new_specification ["I_IND"] I_IND_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* And the injection from powerset of any accessible set. *) | |
(* ------------------------------------------------------------------------- *) | |
let I_SET_EXISTS = prove | |
(`!s:I->bool. | |
s <_c UNIV:I->bool | |
==> ?f:(I->bool)->I. !t u. t SUBSET s /\ u SUBSET s /\ (f t = f u) | |
==> (t = u)`, | |
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(CONJUNCT2 I_AXIOM)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_LT_IMP_LE) THEN | |
REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM]);; | |
let I_SET = new_specification ["I_SET"] | |
(REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] I_SET_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Define a type for "levels" of our set theory. *) | |
(* ------------------------------------------------------------------------- *) | |
let setlevel_INDUCT,setlevel_RECURSION = define_type | |
"setlevel = Ur_bool | |
| Ur_ind | |
| Powerset setlevel | |
| Cartprod setlevel setlevel";; | |
let setlevel_DISTINCT = distinctness "setlevel";; | |
let setlevel_INJ = injectivity "setlevel";; | |
(* ------------------------------------------------------------------------- *) | |
(* Now define a subset of I corresponding to each. *) | |
(* ------------------------------------------------------------------------- *) | |
let setlevel = new_recursive_definition setlevel_RECURSION | |
`(setlevel Ur_bool = IMAGE I_BOOL UNIV) /\ | |
(setlevel Ur_ind = IMAGE I_IND UNIV) /\ | |
(setlevel (Cartprod l1 l2) = | |
IMAGE I_PAIR {x,y | x IN setlevel l1 /\ y IN setlevel l2}) /\ | |
(setlevel (Powerset l) = IMAGE (I_SET (setlevel l)) | |
{s | s SUBSET (setlevel l)})`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Show they all satisfy the cardinal limits. *) | |
(* ------------------------------------------------------------------------- *) | |
let SETLEVEL_CARD = prove | |
(`!l. setlevel l <_c UNIV:I->bool`, | |
MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel] THEN | |
REPEAT CONJ_TAC THENL | |
[TRANS_TAC CARD_LET_TRANS `UNIV:bool->bool` THEN | |
REWRITE_TAC[CARD_LE_IMAGE; CARD_BOOL_LT_I]; | |
TRANS_TAC CARD_LET_TRANS `UNIV:ind_model->bool` THEN | |
REWRITE_TAC[CARD_LE_IMAGE; I_AXIOM]; | |
X_GEN_TAC `l:setlevel` THEN DISCH_TAC THEN | |
TRANS_TAC CARD_LET_TRANS `{s | s SUBSET (setlevel l)}` THEN | |
ASM_SIMP_TAC[I_AXIOM; CARD_LE_IMAGE]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`l1:setlevel`; `l2:setlevel`] THEN STRIP_TAC THEN | |
TRANS_TAC CARD_LET_TRANS `setlevel l1 *_c setlevel l2` THEN | |
ASM_SIMP_TAC[CARD_MUL_LT_INFINITE; I_INFINITE; GSYM mul_c; CARD_LE_IMAGE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the injectivity of the mapping from powerset. *) | |
(* ------------------------------------------------------------------------- *) | |
let I_SET_SETLEVEL = prove | |
(`!l s t. s SUBSET setlevel l /\ t SUBSET setlevel l /\ | |
(I_SET (setlevel l) s = I_SET (setlevel l) t) | |
==> (s = t)`, | |
MESON_TAC[SETLEVEL_CARD; I_SET]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now our universe of sets and (ur)elements. *) | |
(* ------------------------------------------------------------------------- *) | |
let universe = new_definition | |
`universe = {(t,x) | x IN setlevel t}`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Define an actual type V. *) | |
(* *) | |
(* This satisfies a suitable number of the ZF axioms. It isn't extensional *) | |
(* but we could then construct a quotient structure if desired. Anyway it's *) | |
(* only empty sets that aren't. A more significant difference is that we *) | |
(* have urelements and the hierarchy levels are all distinct rather than *) | |
(* being cumulative. *) | |
(* ------------------------------------------------------------------------- *) | |
let v_tybij_th = prove | |
(`?a. a IN universe`, | |
EXISTS_TAC `Ur_bool,I_BOOL T` THEN | |
REWRITE_TAC[universe; IN_ELIM_THM; PAIR_EQ; CONJ_ASSOC; | |
ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1; | |
setlevel; IN_IMAGE; IN_UNIV] THEN | |
MESON_TAC[]);; | |
let v_tybij = | |
new_type_definition "V" ("mk_V","dest_V") v_tybij_th;; | |
let V_TYBIJ = prove | |
(`!l e. e IN setlevel l <=> (dest_V(mk_V(l,e)) = (l,e))`, | |
REWRITE_TAC[GSYM(CONJUNCT2 v_tybij)] THEN | |
REWRITE_TAC[IN_ELIM_THM; universe; FORALL_PAIR_THM; PAIR_EQ] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Drop a level; test if something is a set. *) | |
(* ------------------------------------------------------------------------- *) | |
let droplevel = new_recursive_definition setlevel_RECURSION | |
`droplevel(Powerset l) = l`;; | |
let isasetlevel = new_recursive_definition setlevel_RECURSION | |
`(isasetlevel Ur_bool = F) /\ | |
(isasetlevel Ur_ind = F) /\ | |
(isasetlevel (Cartprod l1 l2) = F) /\ | |
(isasetlevel (Powerset l) = T)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Define some useful inversions. *) | |
(* ------------------------------------------------------------------------- *) | |
let level = new_definition | |
`level x = FST(dest_V x)`;; | |
let element = new_definition | |
`element x = SND(dest_V x)`;; | |
let ELEMENT_IN_LEVEL = prove | |
(`!x. (element x) IN setlevel(level x)`, | |
REWRITE_TAC[V_TYBIJ; v_tybij; level; element; PAIR]);; | |
let SET = prove | |
(`!x. mk_V(level x,element x) = x`, | |
REWRITE_TAC[level; element; PAIR; v_tybij]);; | |
let set = new_definition | |
`set x = @s. s SUBSET (setlevel(droplevel(level x))) /\ | |
(I_SET (setlevel(droplevel(level x))) s = element x)`;; | |
let isaset = new_definition | |
`isaset x <=> ?l. level x = Powerset l`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now all the critical relations. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("<:",(11,"right"));; | |
let inset = new_definition | |
`x <: s <=> (level s = Powerset(level x)) /\ (element x) IN (set s)`;; | |
parse_as_infix("<=:",(12,"right"));; | |
let subset_def = new_definition | |
`s <=: t <=> (level s = level t) /\ !x. x <: s ==> x <: t`;; | |
(* ------------------------------------------------------------------------- *) | |
(* If something has members, it's a set. *) | |
(* ------------------------------------------------------------------------- *) | |
let MEMBERS_ISASET = prove | |
(`!x s. x <: s ==> isaset s`, | |
REWRITE_TAC[inset; isaset] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Each level is nonempty. *) | |
(* ------------------------------------------------------------------------- *) | |
let LEVEL_NONEMPTY = prove | |
(`!l. ?x. x IN setlevel l`, | |
REWRITE_TAC[MEMBER_NOT_EMPTY] THEN | |
MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel; IMAGE_EQ_EMPTY] THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_UNIV] THEN | |
REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN | |
MESON_TAC[EMPTY_SUBSET]);; | |
let LEVEL_SET_EXISTS = prove | |
(`!l. ?s. level s = l`, | |
MP_TAC LEVEL_NONEMPTY THEN MATCH_MP_TAC MONO_FORALL THEN | |
REWRITE_TAC[level] THEN MESON_TAC[FST; PAIR; V_TYBIJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Empty sets (or non-sets, of course) exist at all set levels. *) | |
(* ------------------------------------------------------------------------- *) | |
let MK_V_CLAUSES = prove | |
(`e IN setlevel l | |
==> (level(mk_V(l,e)) = l) /\ (element(mk_V(l,e)) = e)`, | |
REWRITE_TAC[level; element; PAIR; GSYM PAIR_EQ; V_TYBIJ]);; | |
let MK_V_SET = prove | |
(`s SUBSET setlevel l | |
==> (set(mk_V(Powerset l,I_SET (setlevel l) s)) = s) /\ | |
(level(mk_V(Powerset l,I_SET (setlevel l) s)) = Powerset l) /\ | |
(element(mk_V(Powerset l,I_SET (setlevel l) s)) = I_SET (setlevel l) s)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL | |
[REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[MK_V_CLAUSES; set] THEN | |
SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL | |
[REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[MK_V_CLAUSES; droplevel] THEN | |
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN | |
ASM_MESON_TAC[I_SET_SETLEVEL]);; | |
let EMPTY_EXISTS = prove | |
(`!l. ?s. (level s = l) /\ !x. ~(x <: s)`, | |
MATCH_MP_TAC setlevel_INDUCT THEN | |
REPEAT CONJ_TAC THENL | |
[ALL_TAC; ALL_TAC; | |
X_GEN_TAC `l:setlevel` THEN DISCH_THEN(K ALL_TAC) THEN | |
EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) {})` THEN | |
SIMP_TAC[inset; MK_V_CLAUSES; MK_V_SET; EMPTY_SUBSET; NOT_IN_EMPTY]; | |
ALL_TAC] THEN | |
MESON_TAC[LEVEL_SET_EXISTS; MEMBERS_ISASET; isaset; | |
setlevel_DISTINCT]);; | |
let EMPTY_SET = new_specification ["emptyset"] | |
(REWRITE_RULE[SKOLEM_THM] EMPTY_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Comprehension principle, with no change of levels. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPREHENSION_EXISTS = prove | |
(`!s p. ?t. (level t = level s) /\ !x. x <: t <=> x <: s /\ p x`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL | |
[ALL_TAC; ASM_MESON_TAC[MEMBERS_ISASET]] THEN | |
POP_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN | |
MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN | |
ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:I->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `mk_V(Powerset l, | |
I_SET(setlevel l) | |
{i | i IN u /\ p(mk_V(l,i))})` THEN | |
SUBGOAL_THEN `{i | i IN u /\ p (mk_V (l,i))} SUBSET (setlevel l)` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[MK_V_SET; inset] THEN X_GEN_TAC `x:V` THEN | |
REWRITE_TAC[setlevel_INJ] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[SET; MK_V_SET]);; | |
parse_as_infix("suchthat",(21,"left"));; | |
let SUCHTHAT = new_specification ["suchthat"] | |
(REWRITE_RULE[SKOLEM_THM] COMPREHENSION_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Each setlevel exists as a set. *) | |
(* ------------------------------------------------------------------------- *) | |
let SETLEVEL_EXISTS = prove | |
(`!l. ?s. (level s = Powerset l) /\ | |
!x. x <: s <=> (level x = l) /\ element(x) IN setlevel l`, | |
GEN_TAC THEN | |
EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) (setlevel l))` THEN | |
SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; setlevel_INJ] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversely, set(s) belongs in the appropriate level. *) | |
(* ------------------------------------------------------------------------- *) | |
let SET_DECOMP = prove | |
(`!s. isaset s | |
==> (set s) SUBSET (setlevel(droplevel(level s))) /\ | |
(I_SET (setlevel(droplevel(level s))) (set s) = element s)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[isaset] THEN | |
DISCH_THEN(X_CHOOSE_TAC `l:setlevel`) THEN | |
REWRITE_TAC[set] THEN CONV_TAC SELECT_CONV THEN | |
ASM_REWRITE_TAC[setlevel; droplevel] THEN | |
MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN | |
ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]);; | |
let SET_SUBSET_SETLEVEL = prove | |
(`!s. isaset s ==> set(s) SUBSET setlevel(droplevel(level s))`, | |
MESON_TAC[SET_DECOMP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Power set exists. *) | |
(* ------------------------------------------------------------------------- *) | |
let POWERSET_EXISTS = prove | |
(`!s. ?t. (level t = Powerset(level s)) /\ !x. x <: t <=> x <=: s`, | |
GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL | |
[FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isaset]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `l:setlevel` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[droplevel] THEN STRIP_TAC THEN | |
X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC | |
(SPEC `Powerset l` SETLEVEL_EXISTS) THEN | |
MP_TAC(SPECL [`t:V`; `\v. !x. x <: v ==> x <: s`] | |
COMPREHENSION_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:V` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN | |
ASM_MESON_TAC[ELEMENT_IN_LEVEL]; | |
MP_TAC(SPEC `level s` SETLEVEL_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:V` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN | |
ASM_MESON_TAC[ELEMENT_IN_LEVEL; MEMBERS_ISASET; isaset]]);; | |
let POWERSET = new_specification ["powerset"] | |
(REWRITE_RULE[SKOLEM_THM] POWERSET_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pairing operation. *) | |
(* ------------------------------------------------------------------------- *) | |
let pair = new_definition | |
`pair x y = | |
mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))`;; | |
let PAIR_IN_LEVEL = prove | |
(`!x y l m. x IN setlevel l /\ y IN setlevel m | |
==> I_PAIR(x,y) IN setlevel (Cartprod l m)`, | |
REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);; | |
let DEST_MK_PAIR = prove | |
(`dest_V(mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))) = | |
Cartprod (level x) (level y),I_PAIR(element x,element y)`, | |
REWRITE_TAC[GSYM V_TYBIJ] THEN SIMP_TAC[PAIR_IN_LEVEL; ELEMENT_IN_LEVEL]);; | |
let PAIR_INJ = prove | |
(`!x1 y1 x2 y2. (pair x1 y1 = pair x2 y2) <=> (x1 = x2) /\ (y1 = y2)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN | |
REWRITE_TAC[pair] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN REWRITE_TAC[DEST_MK_PAIR] THEN | |
REWRITE_TAC[setlevel_INJ; PAIR_EQ; I_PAIR] THEN | |
REWRITE_TAC[level; element] THEN MESON_TAC[PAIR; CONJUNCT1 v_tybij]);; | |
let LEVEL_PAIR = prove | |
(`!x y. level(pair x y) = Cartprod (level x) (level y)`, | |
REWRITE_TAC[level; | |
REWRITE_RULE[DEST_MK_PAIR] (AP_TERM `dest_V` (SPEC_ALL pair))]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Decomposition functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let fst_def = new_definition | |
`fst p = @x. ?y. p = pair x y`;; | |
let snd_def = new_definition | |
`snd p = @y. ?x. p = pair x y`;; | |
let PAIR_CLAUSES = prove | |
(`!x y. (fst(pair x y) = x) /\ (snd(pair x y) = y)`, | |
REWRITE_TAC[fst_def; snd_def] THEN MESON_TAC[PAIR_INJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And the Cartesian product space. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARTESIAN_EXISTS = prove | |
(`!s t. ?u. (level u = | |
Powerset(Cartprod (droplevel(level s)) | |
(droplevel(level t)))) /\ | |
!z. z <: u <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `isaset s` THENL | |
[ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN | |
SUBGOAL_THEN `?l. (level s = Powerset l)` CHOOSE_TAC THENL | |
[ASM_MESON_TAC[isaset]; ALL_TAC] THEN | |
ASM_CASES_TAC `isaset t` THENL | |
[ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN | |
SUBGOAL_THEN `?m. (level t = Powerset m)` CHOOSE_TAC THENL | |
[ASM_MESON_TAC[isaset]; ALL_TAC] THEN | |
MP_TAC(SPEC `Cartprod l m` SETLEVEL_EXISTS) THEN | |
ASM_REWRITE_TAC[droplevel] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:V` STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPECL [`u:V`; `\z. ?x y. (z = pair x y) /\ x <: s /\ y <: t`] | |
COMPREHENSION_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:V` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `z:V` THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ (c ==> a) ==> ((a /\ b) /\ c <=> c)`) THEN | |
CONJ_TAC THENL [MESON_TAC[ELEMENT_IN_LEVEL]; ALL_TAC] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[LEVEL_PAIR] THEN BINOP_TAC THEN | |
ASM_MESON_TAC[inset; setlevel_INJ]);; | |
let CARTPRODUCT = new_specification ["cartproduct"] | |
(REWRITE_RULE[SKOLEM_THM] CARTESIAN_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Extensionality for sets at the same level. *) | |
(* ------------------------------------------------------------------------- *) | |
let IN_SET_ELEMENT = prove | |
(`!s. isaset s /\ e IN set(s) | |
==> ?x. (e = element x) /\ (level s = Powerset(level x)) /\ x <: s`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN | |
EXISTS_TAC `mk_V(l,e)` THEN REWRITE_TAC[inset] THEN | |
SUBGOAL_THEN `e IN setlevel l` (fun t -> ASM_SIMP_TAC[t; MK_V_CLAUSES]) THEN | |
ASM_MESON_TAC[SET_SUBSET_SETLEVEL; SUBSET; droplevel]);; | |
let SUBSET_ALT = prove | |
(`isaset s /\ isaset t | |
==> (s <=: t <=> (level s = level t) /\ set(s) SUBSET set(t))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[subset_def; inset] THEN | |
ASM_CASES_TAC `level s = level t` THEN ASM_REWRITE_TAC[SUBSET] THEN | |
STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN | |
ASM_MESON_TAC[IN_SET_ELEMENT]);; | |
let SUBSET_ANTISYM_LEVEL = prove | |
(`!s t. isaset s /\ isaset t /\ s <=: t /\ t <=: s ==> (s = t)`, | |
REPEAT GEN_TAC THEN | |
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[SUBSET_ALT] THEN | |
EVERY_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `s:V` SET) THEN MP_TAC(SPEC `t:V` SET) THEN | |
REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN | |
AP_TERM_TAC THEN BINOP_TAC THEN ASM_MESON_TAC[SUBSET_ANTISYM]);; | |
let EXTENSIONALITY_LEVEL = prove | |
(`!s t. isaset s /\ isaset t /\ (level s = level t) /\ (!x. x <: s <=> x <: t) | |
==> (s = t)`, | |
MESON_TAC[SUBSET_ANTISYM_LEVEL; subset_def]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And hence for any nonempty sets. *) | |
(* ------------------------------------------------------------------------- *) | |
let EXTENSIONALITY_NONEMPTY = prove | |
(`!s t. (?x. x <: s) /\ (?x. x <: t) /\ (!x. x <: s <=> x <: t) | |
==> (s = t)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC EXTENSIONALITY_LEVEL THEN | |
ASM_MESON_TAC[MEMBERS_ISASET; inset]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Union set exists. I don't need this but if might be a sanity check. *) | |
(* ------------------------------------------------------------------------- *) | |
let UNION_EXISTS = prove | |
(`!s. ?t. (level t = droplevel(level s)) /\ | |
!x. x <: t <=> ?u. x <: u /\ u <: s`, | |
GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL | |
[ALL_TAC; | |
MP_TAC(SPEC `droplevel(level s)` EMPTY_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[MEMBERS_ISASET]] THEN | |
FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN | |
ASM_REWRITE_TAC[droplevel] THEN ASM_CASES_TAC `?m. l = Powerset m` THENL | |
[ALL_TAC; | |
MP_TAC(SPEC `l:setlevel` EMPTY_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[inset] THEN | |
ASM_MESON_TAC[setlevel_INJ]] THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `m:setlevel` SUBST_ALL_TAC) THEN | |
MP_TAC(SPEC `m:setlevel` SETLEVEL_EXISTS) THEN | |
ASM_REWRITE_TAC[droplevel] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPECL [`t:V`; `\x. ?u. x <: u /\ u <: s`] | |
COMPREHENSION_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[inset; ELEMENT_IN_LEVEL; setlevel_INJ]);; | |
let SETUNION = new_specification ["setunion"] | |
(REWRITE_RULE[SKOLEM_THM] UNION_EXISTS);; | |
(* ------------------------------------------------------------------------- *) | |
(* Boolean stuff. *) | |
(* ------------------------------------------------------------------------- *) | |
let true_def = new_definition | |
`true = mk_V(Ur_bool,I_BOOL T)`;; | |
let false_def = new_definition | |
`false = mk_V(Ur_bool,I_BOOL F)`;; | |
let boolset = new_definition | |
`boolset = | |
mk_V(Powerset Ur_bool,I_SET (setlevel Ur_bool) (setlevel Ur_bool))`;; | |
let IN_BOOL = prove | |
(`!x. x <: boolset <=> (x = true) \/ (x = false)`, | |
REWRITE_TAC[inset; boolset; true_def; false_def] THEN | |
SIMP_TAC[MK_V_SET; SUBSET_REFL] THEN | |
REWRITE_TAC[setlevel_INJ; setlevel] THEN | |
SUBGOAL_THEN `IMAGE I_BOOL UNIV = {I_BOOL F,I_BOOL T}` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[I_BOOL]; | |
ALL_TAC] THEN | |
GEN_TAC THEN | |
GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV o LAND_CONV) [GSYM SET] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL | |
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; | |
ASM_MESON_TAC[V_TYBIJ; ELEMENT_IN_LEVEL; PAIR_EQ]]);; | |
let TRUE_NE_FALSE = prove | |
(`~(true = false)`, | |
REWRITE_TAC[true_def; false_def] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN | |
SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL | |
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; | |
ASM_MESON_TAC[V_TYBIJ; I_BOOL; PAIR_EQ]]);; | |
let BOOLEAN_EQ = prove | |
(`!x y. x <: boolset /\ y <: boolset /\ | |
((x = true) <=> (y = true)) | |
==> (x = y)`, | |
MESON_TAC[TRUE_NE_FALSE; IN_BOOL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Ind stuff. *) | |
(* ------------------------------------------------------------------------- *) | |
let indset = new_definition | |
`indset = mk_V(Powerset Ur_ind,I_SET (setlevel Ur_ind) (setlevel Ur_ind))`;; | |
let INDSET_IND_MODEL = prove | |
(`?f. (!i:ind_model. f(i) <: indset) /\ (!i j. (f i = f j) ==> (i = j))`, | |
EXISTS_TAC `\i. mk_V(Ur_ind,I_IND i)` THEN REWRITE_TAC[] THEN | |
SUBGOAL_THEN `!i. (I_IND i) IN setlevel Ur_ind` ASSUME_TAC THENL | |
[REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ALL_TAC] THEN | |
ASM_SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; indset; MK_V_CLAUSES] THEN | |
ASM_MESON_TAC[V_TYBIJ; I_IND; ELEMENT_IN_LEVEL; PAIR_EQ]);; | |
let INDSET_INHABITED = prove | |
(`?x. x <: indset`, | |
MESON_TAC[INDSET_IND_MODEL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Axiom of choice (this is trivially so in HOL anyway, but...) *) | |
(* ------------------------------------------------------------------------- *) | |
let ch = | |
let th = prove | |
(`?ch. !s. (?x. x <: s) ==> ch(s) <: s`, | |
REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]) in | |
new_specification ["ch"] th;; | |
(* ------------------------------------------------------------------------- *) | |
(* Sanity check lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let IN_POWERSET = prove | |
(`!x s. x <: powerset s <=> x <=: s`, | |
MESON_TAC[POWERSET]);; | |
let IN_CARTPRODUCT = prove | |
(`!z s t. z <: cartproduct s t <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`, | |
MESON_TAC[CARTPRODUCT]);; | |
let IN_COMPREHENSION = prove | |
(`!p s x. x <: s suchthat p <=> x <: s /\ p x`, | |
MESON_TAC[SUCHTHAT]);; | |
let CARTPRODUCT_INHABITED = prove | |
(`(?x. x <: s) /\ (?y. y <: t) ==> ?z. z <: cartproduct s t`, | |
MESON_TAC[IN_CARTPRODUCT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of function space. *) | |
(* ------------------------------------------------------------------------- *) | |
let funspace = new_definition | |
`funspace s t = | |
powerset(cartproduct s t) suchthat | |
(\u. !x. x <: s ==> ?!y. pair x y <: u)`;; | |
let apply_def = new_definition | |
`apply f x = @y. pair x y <: f`;; | |
let abstract = new_definition | |
`abstract s t f = | |
(cartproduct s t) suchthat (\z. !x y. (pair x y = z) ==> (y = f x))`;; | |
let APPLY_ABSTRACT = prove | |
(`!x s t. x <: s /\ f(x) <: t ==> (apply(abstract s t f) x = f(x))`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[apply_def; abstract; IN_CARTPRODUCT; SUCHTHAT] THEN | |
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[PAIR_INJ] THEN | |
ASM_MESON_TAC[]);; | |
let APPLY_IN_RANSPACE = prove | |
(`!f x s t. x <: s /\ f <: funspace s t ==> apply f x <: t`, | |
REWRITE_TAC[funspace; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; subset_def] THEN | |
REWRITE_TAC[apply_def] THEN MESON_TAC[PAIR_INJ]);; | |
let ABSTRACT_IN_FUNSPACE = prove | |
(`!f x s t. (!x. x <: s ==> f(x) <: t) | |
==> abstract s t f <: funspace s t`, | |
REWRITE_TAC[funspace; abstract; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; | |
subset_def; PAIR_INJ] THEN | |
SIMP_TAC[LEFT_FORALL_IMP_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[UNWIND_THM1; EXISTS_REFL] THEN MESON_TAC[]);; | |
let FUNSPACE_INHABITED = prove | |
(`!s t. ((?x. x <: s) ==> (?y. y <: t)) ==> ?f. f <: funspace s t`, | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `abstract s t (\x. @y. y <: t)` THEN | |
MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN ASM_MESON_TAC[]);; | |
let ABSTRACT_EQ = prove | |
(`!s t1 t2 f g. | |
(?x. x <: s) /\ | |
(!x. x <: s ==> f(x) <: t1 /\ g(x) <: t2 /\ (f x = g x)) | |
==> (abstract s t1 f = abstract s t2 g)`, | |
REWRITE_TAC[abstract] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC EXTENSIONALITY_NONEMPTY THEN | |
REWRITE_TAC[SUCHTHAT; IN_CARTPRODUCT] THEN REPEAT CONJ_TAC THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
SIMP_TAC[TAUT `(a /\ b /\ c) /\ d <=> ~(a ==> b /\ c ==> ~d)`] THEN | |
REWRITE_TAC[PAIR_INJ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM] THENL | |
[ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[PAIR_INJ] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[PAIR_INJ] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case of treating a Boolean function as a set. *) | |
(* ------------------------------------------------------------------------- *) | |
let boolean = new_definition | |
`boolean b = if b then true else false`;; | |
let holds = new_definition | |
`holds s x <=> (apply s x = true)`;; | |
let BOOLEAN_IN_BOOLSET = prove | |
(`!b. boolean b <: boolset`, | |
REWRITE_TAC[boolean] THEN MESON_TAC[IN_BOOL]);; | |
let BOOLEAN_EQ_TRUE = prove | |
(`!b. (boolean b = true) <=> b`, | |
REWRITE_TAC[boolean] THEN MESON_TAC[TRUE_NE_FALSE]);; | |