Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Mizar Light proof of duality in projective geometry. *) | |
(* ========================================================================= *) | |
let holby_prover = | |
fun ths (asl,w as gl) -> ACCEPT_TAC(HOL_BY ths w) gl;; | |
current_prover := holby_prover;; | |
(* ------------------------------------------------------------------------- *) | |
(* To avoid adding any axioms, pick a simple model: the Fano plane. *) | |
(* ------------------------------------------------------------------------- *) | |
let Line_INDUCT,Line_RECURSION = define_type | |
"Line = Line_1 | Line_2 | Line_3 | Line_4 | | |
Line_5 | Line_6 | Line_7";; | |
let Point_INDUCT,Point_RECURSION = define_type | |
"Point = Point_1 | Point_2 | Point_3 | Point_4 | | |
Point_5 | Point_6 | Point_7";; | |
let Point_DISTINCT = distinctness "Point";; | |
let Line_DISTINCT = distinctness "Line";; | |
let fano_incidence = | |
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4; | |
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];; | |
let fano_point i = mk_const("Point_"^string_of_int i,[]) | |
and fano_line i = mk_const("Line_"^string_of_int i,[]);; | |
let p = `p:Point` and l = `l:Line` ;; | |
let fano_clause (i,j) = | |
mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));; | |
(* ------------------------------------------------------------------------- *) | |
(* Define the incidence relation "ON" from "fano_incidence" *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("ON",(11,"right"));; | |
let ON = new_definition | |
`(p:Point) ON (l:Line) <=> | |
(p = Point_1 /\ l = Line_1) \/ | |
(p = Point_1 /\ l = Line_2) \/ | |
(p = Point_1 /\ l = Line_3) \/ | |
(p = Point_2 /\ l = Line_1) \/ | |
(p = Point_2 /\ l = Line_4) \/ | |
(p = Point_2 /\ l = Line_5) \/ | |
(p = Point_3 /\ l = Line_1) \/ | |
(p = Point_3 /\ l = Line_6) \/ | |
(p = Point_3 /\ l = Line_7) \/ | |
(p = Point_4 /\ l = Line_2) \/ | |
(p = Point_4 /\ l = Line_4) \/ | |
(p = Point_4 /\ l = Line_6) \/ | |
(p = Point_5 /\ l = Line_2) \/ | |
(p = Point_5 /\ l = Line_5) \/ | |
(p = Point_5 /\ l = Line_7) \/ | |
(p = Point_6 /\ l = Line_3) \/ | |
(p = Point_6 /\ l = Line_4) \/ | |
(p = Point_6 /\ l = Line_7) \/ | |
(p = Point_7 /\ l = Line_3) \/ | |
(p = Point_7 /\ l = Line_5) \/ | |
(p = Point_7 /\ l = Line_6)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Also produce a more convenient case-by-case rewrite. *) | |
(* ------------------------------------------------------------------------- *) | |
let ON_CLAUSES = prove | |
(`(Point_1 ON Line_1 <=> T) /\ | |
(Point_1 ON Line_2 <=> T) /\ | |
(Point_1 ON Line_3 <=> T) /\ | |
(Point_1 ON Line_4 <=> F) /\ | |
(Point_1 ON Line_5 <=> F) /\ | |
(Point_1 ON Line_6 <=> F) /\ | |
(Point_1 ON Line_7 <=> F) /\ | |
(Point_2 ON Line_1 <=> T) /\ | |
(Point_2 ON Line_2 <=> F) /\ | |
(Point_2 ON Line_3 <=> F) /\ | |
(Point_2 ON Line_4 <=> T) /\ | |
(Point_2 ON Line_5 <=> T) /\ | |
(Point_2 ON Line_6 <=> F) /\ | |
(Point_2 ON Line_7 <=> F) /\ | |
(Point_3 ON Line_1 <=> T) /\ | |
(Point_3 ON Line_2 <=> F) /\ | |
(Point_3 ON Line_3 <=> F) /\ | |
(Point_3 ON Line_4 <=> F) /\ | |
(Point_3 ON Line_5 <=> F) /\ | |
(Point_3 ON Line_6 <=> T) /\ | |
(Point_3 ON Line_7 <=> T) /\ | |
(Point_4 ON Line_1 <=> F) /\ | |
(Point_4 ON Line_2 <=> T) /\ | |
(Point_4 ON Line_3 <=> F) /\ | |
(Point_4 ON Line_4 <=> T) /\ | |
(Point_4 ON Line_5 <=> F) /\ | |
(Point_4 ON Line_6 <=> T) /\ | |
(Point_4 ON Line_7 <=> F) /\ | |
(Point_5 ON Line_1 <=> F) /\ | |
(Point_5 ON Line_2 <=> T) /\ | |
(Point_5 ON Line_3 <=> F) /\ | |
(Point_5 ON Line_4 <=> F) /\ | |
(Point_5 ON Line_5 <=> T) /\ | |
(Point_5 ON Line_6 <=> F) /\ | |
(Point_5 ON Line_7 <=> T) /\ | |
(Point_6 ON Line_1 <=> F) /\ | |
(Point_6 ON Line_2 <=> F) /\ | |
(Point_6 ON Line_3 <=> T) /\ | |
(Point_6 ON Line_4 <=> T) /\ | |
(Point_6 ON Line_5 <=> F) /\ | |
(Point_6 ON Line_6 <=> F) /\ | |
(Point_6 ON Line_7 <=> T) /\ | |
(Point_7 ON Line_1 <=> F) /\ | |
(Point_7 ON Line_2 <=> F) /\ | |
(Point_7 ON Line_3 <=> T) /\ | |
(Point_7 ON Line_4 <=> F) /\ | |
(Point_7 ON Line_5 <=> T) /\ | |
(Point_7 ON Line_6 <=> T) /\ | |
(Point_7 ON Line_7 <=> F)`, | |
REWRITE_TAC[ON; Line_DISTINCT; Point_DISTINCT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Case analysis theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let FORALL_POINT = prove | |
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\ | |
P Point_5 /\ P Point_6 /\ P Point_7`, | |
EQ_TAC THEN REWRITE_TAC[Point_INDUCT] THEN SIMP_TAC[]);; | |
let EXISTS_POINT = prove | |
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/ | |
P Point_5 \/ P Point_6 \/ P Point_7`, | |
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN | |
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);; | |
let FORALL_LINE = prove | |
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\ | |
P Line_5 /\ P Line_6 /\ P Line_7`, | |
EQ_TAC THEN REWRITE_TAC[Line_INDUCT] THEN SIMP_TAC[]);; | |
let EXISTS_LINE = prove | |
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/ | |
P Line_5 \/ P Line_6 \/ P Line_7`, | |
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN | |
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence prove the axioms by a naive case split (a bit slow but easy). *) | |
(* ------------------------------------------------------------------------- *) | |
let FANO_TAC = | |
GEN_REWRITE_TAC DEPTH_CONV | |
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN | |
GEN_REWRITE_TAC DEPTH_CONV | |
(basic_rewrites() @ [ON_CLAUSES; Point_DISTINCT; Line_DISTINCT]);; | |
let AXIOM_1 = time prove | |
(`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\ | |
!l'. p ON l' /\ p' ON l' ==> (l' = l)`, | |
FANO_TAC);; | |
let AXIOM_2 = time prove | |
(`!l l'. ?p. p ON l /\ p ON l'`, | |
FANO_TAC);; | |
let AXIOM_3 = time prove | |
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
~(?l. p ON l /\ p' ON l /\ p'' ON l)`, | |
FANO_TAC);; | |
let AXIOM_4 = time prove | |
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
p ON l /\ p' ON l /\ p'' ON l`, | |
FANO_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the interesting bit. *) | |
(* ------------------------------------------------------------------------- *) | |
let AXIOM_1' = theorem | |
"!p p' l l'. ~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l' | |
==> (l' = l)" | |
[fix ["p:Point"; "p':Point"; "l:Line"; "l':Line"]; | |
assume "~(p = p') /\\ p ON l /\\ p' ON l /\\ p ON l' /\\ p' ON l'" at 1; | |
consider ["l1:Line"] st "p ON l1 /\\ p' ON l1 /\\ | |
!l'. p ON l' /\\ p' ON l' ==> (l' = l1)" from [1] by [AXIOM_1] at 2; | |
have "l = l1" from [1;2]; | |
so have "... = l'" from [1;2]; | |
qed];; | |
let LEMMA_1 = theorem | |
"!O. ?l. O ON l" | |
[consider ["p:Point"; "p':Point"; "p'':Point"] st | |
"~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\ | |
~(?l. p ON l /\\ p' ON l /\\ p'' ON l)" by [AXIOM_3] at 1; | |
fix ["O:Point"]; | |
have "~(p = O) \/ ~(p' = O)" from [1]; | |
so consider ["P:Point"] st "~(P = O)" at 2; | |
consider ["l:Line"] st "O ON l /\\ P ON l /\\ | |
!l'. O ON l' /\\ P ON l' ==> (l' = l)" from [2] by [AXIOM_1] at 3; | |
thus "?l. O ON l" from [3]];; | |
let DUAL_1 = theorem | |
"!l l'. ~(l = l') ==> ?p. p ON l /\\ p ON l' /\\ | |
!p'. p' ON l /\\ p' ON l' ==> (p' = p)" | |
[otherwise consider ["l:Line"; "l':Line"] st | |
"~(l = l') /\\ !p. p ON l /\\ p ON l' | |
==> ?p'. p' ON l /\\ p' ON l' /\\ ~(p' = p)" at 1; | |
consider ["p:Point"] st "p ON l /\\ p ON l'" by [AXIOM_2] at 2; | |
consider ["p':Point"] st "p' ON l /\\ p' ON l' /\\ ~(p' = p)" from [1;2] at 3; | |
hence contradiction from [1;2] by [AXIOM_1']];; | |
let DUAL_2 = theorem | |
"!p p'. ?l. p ON l /\\ p' ON l" | |
[fix ["p:Point"; "p':Point"]; | |
have "?l. p ON l" by [LEMMA_1] at 1; | |
have "(p = p') \/ | |
?l. p ON l /\\ p' ON l /\\ | |
!l'. p ON l' /\\ p' ON l' ==> (l' = l)" by [AXIOM_1]; | |
hence thesis from [1]];; | |
let DUAL_3 = theorem | |
"?l1 l2 l3. ~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3) /\\ | |
~(?p. p ON l1 /\\ p ON l2 /\\ p ON l3)" | |
[consider ["p1:Point"; "p2:Point"; "p3:Point"] st | |
"~(p1 = p2) /\\ ~(p2 = p3) /\\ ~(p1 = p3) /\\ | |
~(?l. p1 ON l /\\ p2 ON l /\\ p3 ON l)" by [AXIOM_3] at 1; | |
consider ["l1:Line"] st "p1 ON l1 /\\ p3 ON l1" by [DUAL_2] at 2; | |
consider ["l2:Line"] st "p2 ON l2 /\\ p3 ON l2" by [DUAL_2] at 3; | |
consider ["l3:Line"] st "p1 ON l3 /\\ p2 ON l3" by [DUAL_2] at 4; | |
take ["l1"; "l2"; "l3"]; | |
thus "~(l1 = l2) /\\ ~(l2 = l3) /\\ ~(l1 = l3)" from [1;2;3;4] at 5; | |
otherwise consider ["q:Point"] st "q ON l1 /\\ q ON l2 /\\ q ON l3" at 6; | |
consider ["q':Point"] st "q' ON l1 /\\ q' ON l3 /\\ | |
!p'. p' ON l1 /\\ p' ON l3 ==> (p' = q')" from [5] by [DUAL_1] at 7; | |
have "q = q'" from [6;7]; | |
so have "... = p1" from [2;4;7]; | |
hence contradiction from [1;3;6]];; | |
let DUAL_4 = theorem | |
"!O. ?OP OQ OR. ~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\ | |
O ON OP /\\ O ON OQ /\\ O ON OR" | |
[fix ["O:Point"]; | |
consider ["OP:Line"] st "O ON OP" by [LEMMA_1] at 1; | |
consider ["p:Point"; "p':Point"; "p'':Point"] st | |
"~(p = p') /\\ ~(p' = p'') /\\ ~(p = p'') /\\ | |
p ON OP /\\ p' ON OP /\\ p'' ON OP" by [AXIOM_4] at 2; | |
have "~(p = O) \/ ~(p' = O)" from [2]; | |
so consider ["P:Point"] st "~(P = O) /\\ P ON OP" from [2] at 3; | |
consider ["q:Point"; "q':Point"; "q'':Point"] st | |
"~(q = q') /\\ ~(q' = q'') /\\ ~(q = q'') /\\ | |
~(?l. q ON l /\\ q' ON l /\\ q'' ON l)" by [AXIOM_3] at 4; | |
have "~(q ON OP) \/ ~(q' ON OP) \/ ~(q'' ON OP)" from [4]; | |
so consider ["Q:Point"] st "~(Q ON OP)" at 5; | |
consider ["l:Line"] st "P ON l /\\ Q ON l" by [DUAL_2] at 6; | |
consider ["r:Point"; "r':Point"; "r'':Point"] st | |
"~(r = r') /\\ ~(r' = r'') /\\ ~(r = r'') /\\ | |
r ON l /\\ r' ON l /\\ r'' ON l" by [AXIOM_4] at 7; | |
have "((r = P) \/ (r = Q) \/ ~(r = P) /\\ ~(r = Q)) /\\ | |
((r' = P) \/ (r' = Q) \/ ~(r' = P) /\\ ~(r' = Q))"; | |
so consider ["R:Point"] st "R ON l /\\ ~(R = P) /\\ ~(R = Q)" from [7] at 8; | |
consider ["OQ:Line"] st "O ON OQ /\\ Q ON OQ" by [DUAL_2] at 9; | |
consider ["OR:Line"] st "O ON OR /\\ R ON OR" by [DUAL_2] at 10; | |
take ["OP"; "OQ"; "OR"]; | |
have "~(O ON l)" from [1;3;5;6] by [AXIOM_1']; | |
hence "~(OP = OQ) /\\ ~(OQ = OR) /\\ ~(OP = OR) /\\ | |
O ON OP /\\ O ON OQ /\\ O ON OR" from [1;3;5;6;8;9;10] by [AXIOM_1']];; | |