Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* open satTools dimacsTools SatSolvers minisatResolve | |
satCommonTools minisatParse satScript def_cnf *) | |
(* | |
for interactive use: | |
#load "str.cma";; | |
#use "def_cnf.ml";; | |
#use "satCommonTools.ml";; | |
#use "dimacsTools.ml";; | |
#use "SatSolvers.ml";; | |
#use "satScript.ml";; | |
#use "satTools.ml";; | |
#use "minisatParse.ml";; | |
#use "minisatResolve.ml";; | |
#use "minisatProve.ml";; | |
#use "taut.ml";; | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Flag to (de-)activate debugging facilities. *) | |
(* ------------------------------------------------------------------------- *) | |
let sat_debugging = ref false;; | |
(* ------------------------------------------------------------------------- *) | |
(* Split up a theorem according to conjuncts, in a general sense. *) | |
(* ------------------------------------------------------------------------- *) | |
let GCONJUNCTS = | |
let [pth_ni1; pth_ni2; pth_no1; pth_no2; pth_an1; pth_an2; pth_nn] = | |
(map UNDISCH_ALL o CONJUNCTS o TAUT) | |
`(~(p ==> q) ==> p) /\ | |
(~(p ==> q) ==> ~q) /\ | |
(~(p \/ q) ==> ~p) /\ | |
(~(p \/ q) ==> ~q) /\ | |
(p /\ q ==> p) /\ | |
(p /\ q ==> q) /\ | |
(~ ~p ==> p)` in | |
let p_tm = concl pth_an1 and q_tm = concl pth_an2 in | |
let rec GCONJUNCTS th acc = | |
match (concl th) with | |
Comb(Const("~",_),Comb(Comb(Const("==>",_),p),q)) -> | |
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni1)) | |
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni2)) | |
acc) | |
| Comb(Const("~",_),Comb(Comb(Const("\\/",_),p),q)) -> | |
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no1)) | |
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no2)) | |
acc) | |
| Comb(Comb(Const("/\\",_),p),q) -> | |
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an1)) | |
(GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an2)) | |
acc) | |
| Comb(Const("~",_),Comb(Const("~",_),p)) -> | |
GCONJUNCTS (PROVE_HYP th (INST [p,p_tm] pth_nn)) acc | |
| _ -> th::acc in | |
fun th -> GCONJUNCTS th [];; | |
(* ------------------------------------------------------------------------- *) | |
(* Generate fresh variable names (could just use genvars). *) | |
(* ------------------------------------------------------------------------- *) | |
let propvar i = mk_var("x"^string_of_int i,bool_ty);; | |
(* ------------------------------------------------------------------------- *) | |
(* Set up the basic definitional arrangement. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec localdefs tm (n,defs,lfn) = | |
if is_neg tm then | |
let n1,v1,defs1,lfn1 = localdefs (rand tm) (n,defs,lfn) in | |
let tm' = mk_neg v1 in | |
try (n1,apply defs1 tm',defs1,lfn1) with Failure _ -> | |
let n2 = n1 + 1 in | |
let v2 = propvar n2 in | |
n2,v2,(tm' |-> v2) defs1,(v2 |-> tm) lfn1 | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
let n1,v1,defs1,lfn1 = localdefs (lhand tm) (n,defs,lfn) in | |
let n2,v2,defs2,lfn2 = localdefs (rand tm) (n1,defs1,lfn1) in | |
let tm' = mk_comb(mk_comb(rator(rator tm),v1),v2) in | |
try (n2,apply defs2 tm',defs2,lfn2) with Failure _ -> | |
let n3 = n2 + 1 in | |
let v3 = propvar n3 in | |
n3,v3,(tm' |-> v3) defs2,(v3 |-> tm) lfn2 | |
else try (n,apply defs tm,defs,lfn) with Failure _ -> | |
let n1 = n + 1 in | |
let v1 = propvar n1 in | |
n1,v1,(tm |-> v1) defs,(v1 |-> tm) lfn;; | |
(* ------------------------------------------------------------------------- *) | |
(* Just translate to fresh variables, but otherwise leave unchanged. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec transvar (n,tm,vdefs,lfn) = | |
if is_neg tm then | |
let n1,tm1,vdefs1,lfn1 = transvar (n,rand tm,vdefs,lfn) in | |
n1,mk_comb(rator tm,tm1),vdefs1,lfn1 | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
let n1,tm1,vdefs1,lfn1 = transvar (n,lhand tm,vdefs,lfn) in | |
let n2,tm2,vdefs2,lfn2 = transvar (n1,rand tm,vdefs1,lfn1) in | |
n2,mk_comb(mk_comb(rator(rator tm),tm1),tm2),vdefs2,lfn2 | |
else try n,apply vdefs tm,vdefs,lfn with Failure _ -> | |
let n1 = n + 1 in | |
let v1 = propvar n1 in | |
n1,v1,(tm |-> v1) vdefs,(v1 |-> tm) lfn;; | |
(* ------------------------------------------------------------------------- *) | |
(* Flag to choose whether to exploit existing conjunctive structure. *) | |
(* ------------------------------------------------------------------------- *) | |
let exploit_conjunctive_structure = ref true;; | |
(* ------------------------------------------------------------------------- *) | |
(* Check if something is clausal (slightly stupid). *) | |
(* ------------------------------------------------------------------------- *) | |
let is_literal tm = is_var tm || is_neg tm && is_var(rand tm);; | |
let is_clausal tm = | |
let djs = disjuncts tm in | |
forall is_literal djs && list_mk_disj djs = tm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now do the definitional arrangement but not wastefully at the top. *) | |
(* ------------------------------------------------------------------------- *) | |
let definitionalize = | |
let transform_imp = | |
let pth = TAUT `(p ==> q) <=> ~p \/ q` in | |
let ptm = rand(concl pth) in | |
let p_tm = rand(lhand ptm) and q_tm = rand ptm in | |
fun th -> let ip,q = dest_comb(concl th) in | |
let p = rand ip in | |
EQ_MP (INST [p,p_tm; q,q_tm] pth) th | |
and transform_iff_1 = | |
let pth = UNDISCH(TAUT `(p <=> q) ==> (p \/ ~q)`) in | |
let ptm = concl pth in | |
let p_tm = lhand ptm and q_tm = rand(rand ptm) in | |
fun th -> let ip,q = dest_comb(concl th) in | |
let p = rand ip in | |
PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) | |
and transform_iff_2 = | |
let pth = UNDISCH(TAUT `(p <=> q) ==> (~p \/ q)`) in | |
let ptm = concl pth in | |
let p_tm = rand(lhand ptm) and q_tm = rand ptm in | |
fun th -> let ip,q = dest_comb(concl th) in | |
let p = rand ip in | |
PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) in | |
let definitionalize th (n,tops,defs,lfn) = | |
let t = concl th in | |
if is_clausal t then | |
let n',v,defs',lfn' = transvar (n,t,defs,lfn) in | |
(n',(v,th)::tops,defs',lfn') | |
else if is_neg t then | |
let n1,v1,defs1,lfn1 = localdefs (rand t) (n,defs,lfn) in | |
(n1,(mk_neg v1,th)::tops,defs1,lfn1) | |
else if is_disj t then | |
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in | |
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in | |
(n2,(mk_disj(v1,v2),th)::tops,defs2,lfn2) | |
else if is_imp t then | |
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in | |
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in | |
(n2,(mk_disj(mk_neg v1,v2),transform_imp th)::tops,defs2,lfn2) | |
else if is_iff t then | |
let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in | |
let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in | |
(n2,(mk_disj(v1,mk_neg v2),transform_iff_1 th):: | |
(mk_disj(mk_neg v1,v2),transform_iff_2 th)::tops,defs2,lfn2) | |
else | |
let n',v,defs',lfn' = localdefs t (n,defs,lfn) in | |
(n',(v,th)::tops,defs',lfn') in | |
definitionalize;; | |
(* SAT_PROVE is the main interface function. | |
Takes in a term t and returns thm or exception if not a taut *) | |
(* invokes minisatp, returns |- t or |- model ==> ~t *) | |
(* if minisatp proof log does not exist after minisatp call returns, | |
we will assume that minisatp discovered UNSAT during the read-in | |
phase and did not bother with a proof log. | |
In that case the problem is simple and can be delegated to TAUT *) | |
(* FIXME: I do not like the TAUT solution; | |
what is trivial for Minisat may not be so for TAUT *) | |
exception Sat_counterexample of thm;; | |
(* delete temporary files *) | |
(* if zChaff was used, also delete hard-wired trace filenames*) | |
let CLEANUP fname solvername = | |
let delete fname = try Sys.remove fname with Sys_error _ -> () in | |
(delete fname; | |
delete (fname^".cnf"); | |
delete (fname^"."^solvername); | |
delete (fname^"."^solvername^".proof"); | |
delete (fname^"."^solvername^".stats"); | |
if solvername="zchaff" then | |
(delete(Filename.concat (!temp_path) "resolve_trace"); | |
delete(Filename.concat (!temp_path) "zc2mso_trace")) | |
else ());; | |
let GEN_SAT_PROVE solver solvername = | |
let false_tm = `F` | |
and presimp_conv = GEN_REWRITE_CONV DEPTH_CONV | |
[NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES] | |
and p_tm = `p:bool` and q_tm = `q:bool` | |
and pth_triv = TAUT `(~p <=> F) <=> p` | |
and pth_main = UNDISCH_ALL(TAUT `(~p <=> q) ==> (q ==> F) ==> p`) in | |
let triv_rule p th = EQ_MP(INST [p,p_tm] pth_triv) th | |
and main_rule p q sth th = | |
itlist PROVE_HYP [sth; DISCH_ALL th] (INST [p,p_tm; q,q_tm] pth_main) in | |
let invoke_minisat lfn mcth stm t rcv vc = | |
let nr = Array.length rcv in | |
let res = match invokeSat solver None t (Some vc) with | |
Some model -> | |
let model2 = | |
mapfilter (fun l -> let x = hd(frees l) in | |
let y = apply lfn x in | |
if is_var y then vsubst [y,x] l else fail()) | |
model in | |
satCheck model2 stm | |
| None -> | |
(match parseMinisatProof nr ((!tmp_name)^"."^solvername^".proof") vc rcv with | |
Some (cl,sk,scl,srl,cc) -> | |
unsatProveResolve lfn mcth (cl,sk,srl) (* returns p |- F *) | |
| None -> UNDISCH(TAUT(mk_imp(stm,false_tm)))) in | |
res in | |
fun tm -> | |
let sth = presimp_conv (mk_neg tm) in | |
let stm = rand(concl sth) in | |
if stm = false_tm then triv_rule tm sth else | |
let th = ASSUME stm in | |
let ths = if !exploit_conjunctive_structure then GCONJUNCTS th | |
else [th] in | |
let n,tops,defs,lfn = | |
itlist definitionalize ths (-1,[],undefined,undefined) in | |
let defg = foldl (fun a t nv -> (t,nv)::a) [] defs in | |
let mdefs = filter (fun (r,_) -> not (is_var r)) defg in | |
let eqs = map (fun (r,l) -> mk_iff(l,r)) mdefs in | |
let clausify eq cls = | |
let fvs = frees eq and eth = (NNFC_CONV THENC CNF_CONV) eq in | |
let tth = INST (map (fun v -> apply lfn v,v) fvs) eth in | |
let xth = ADD_ASSUM stm (EQ_MP tth (REFL(apply lfn (lhand eq)))) in | |
zip (conjuncts(rand(concl eth))) (CONJUNCTS xth) @ cls in | |
let all_clauses = itlist clausify eqs tops in | |
let mcth = itlist (fun (c,th) m -> Termmap.add c th m) all_clauses | |
Termmap.empty in | |
let vc = n + 1 in | |
let rcv = Array.of_list (map fst all_clauses) in | |
let ntdcnf = list_mk_conj (map fst all_clauses) in | |
let th = invoke_minisat lfn mcth stm ntdcnf rcv vc in | |
(if not (!sat_debugging) then CLEANUP (!tmp_name) solvername else (); | |
if is_imp(concl th) | |
then raise (Sat_counterexample | |
(EQ_MP (AP_TERM (rator(concl th)) (SYM sth)) th)) | |
else main_rule tm stm sth th);; | |
let SAT_PROVE = GEN_SAT_PROVE minisatp "minisatp";; | |
let ZSAT_PROVE = GEN_SAT_PROVE zchaff "zchaff";; | |