Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Completeness of first order resolution. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* We want to restrict ourselves to finite lists of literals. *) | |
(* ------------------------------------------------------------------------- *) | |
let atom = new_recursive_definition form_RECURSION | |
`(atom False <=> F) /\ | |
(atom (Atom p l) <=> T) /\ | |
(atom (q --> r) <=> F) /\ | |
(atom (!!x q) <=> F)`;; | |
let literal = new_definition | |
`literal p <=> atom(p) \/ ?q. atom(q) /\ (p = Not q)`;; | |
let clause = new_definition | |
`clause cl <=> FINITE cl /\ !p. p IN cl ==> literal p`;; | |
let LITERAL = prove | |
(`literal(Atom r args) /\ | |
literal(Not(Atom r args))`, | |
MESON_TAC[literal; atom]);; | |
let ATOM = prove | |
(`atom p <=> ?q l. p = Atom q l`, | |
MESON_TAC[atom; form_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Negation on literals. *) | |
(* ------------------------------------------------------------------------- *) | |
let negative = new_definition | |
`negative p <=> ?q. p = Not q`;; | |
let positive = new_definition | |
`positive p <=> ~(negative p)`;; | |
let negate = new_definition | |
`~~p = if negative p then @q. (Not q = p) else Not p`;; | |
let PHOLDS_NEGATE = prove | |
(`pholds d (~~p) <=> ~(pholds d p)`, | |
REWRITE_TAC[negate] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[PHOLDS] THEN | |
POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[negative]) THEN | |
REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL; PHOLDS]);; | |
let HOLDS_NEGATE = prove | |
(`holds M v (~~p) <=> ~(holds M v p)`, | |
REWRITE_TAC[negate] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[HOLDS] THEN | |
POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[negative]) THEN | |
REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL; HOLDS]);; | |
let NEGATE_NEG = prove | |
(`~~(Not p) = p`, | |
REWRITE_TAC[negate; negative; Not_DEF; form_INJ; GSYM EXISTS_REFL]);; | |
let NEGATE_ATOM = prove | |
(`!p. atom p ==> (~~p = Not p)`, | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom] THEN | |
REWRITE_TAC[negate; negative; Not_DEF; form_DISTINCT]);; | |
let NEGATE_REFL = prove | |
(`!p. ~(~~p = p)`, | |
MESON_TAC[PHOLDS_NEGATE]);; | |
let PHOLDS_ATOM = prove | |
(`!p d. atom(p) ==> (pholds d p = d(p))`, | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom; pholds]);; | |
let NEGATE_NEGATE = prove | |
(`!p. literal p ==> (~~(~~p) = p)`, | |
REWRITE_TAC[literal] THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NEGATE_ATOM; NEGATE_NEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic resolution step. *) | |
(* ------------------------------------------------------------------------- *) | |
let resolve = new_definition | |
`resolve (p:form) cl1 cl2 = (cl1 DELETE p) UNION (cl2 DELETE ~~p)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Inductive definition of propositional resolution. *) | |
(* ------------------------------------------------------------------------- *) | |
let presproof_RULES,presproof_INDUCT,presproof_CASES = new_inductive_definition | |
`(!cl. cl IN hyps ==> presproof hyps cl) /\ | |
(!p cl1 cl2. | |
presproof hyps cl1 /\ presproof hyps cl2 /\ p IN cl1 /\ ~~p IN cl2 | |
==> presproof hyps (resolve p cl1 cl2))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Interpretation of clause as formula (meaningful only if it's a clause). *) | |
(* ------------------------------------------------------------------------- *) | |
let interp = new_definition | |
`interp cl = ITLIST (||) (list_of_set cl) False`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Compactness variant. *) | |
(* ------------------------------------------------------------------------- *) | |
let UNPSATISFIABLE_FINITE_SUBSET = prove | |
(`!s. ~(psatisfiable s) | |
==> ?t. FINITE t /\ t SUBSET s /\ ~(psatisfiable t)`, | |
REWRITE_TAC[psatisfiable] THEN MESON_TAC[COMPACT_PROP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Monotonicity w.r.t. hyps. *) | |
(* ------------------------------------------------------------------------- *) | |
let PRESPROOF_MONO = prove | |
(`!hyps1 hyps2 c. | |
presproof hyps1 c /\ hyps1 SUBSET hyps2 ==> presproof hyps2 c`, | |
GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[presproof_RULES; SUBSET]);; | |
let PRESPROOF_TRANS = prove | |
(`!hyps hyps' c. | |
(!c'. c' IN hyps' ==> presproof hyps c') /\ presproof hyps' c | |
==> presproof hyps c`, | |
GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN | |
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[presproof_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let IMAGE_CLAUSE = prove | |
(`{interp cl | cl IN hyps} = IMAGE interp hyps`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; CONJ_ACI]);; | |
let PHOLDS_INTERP = prove | |
(`!cl d. FINITE cl ==> (pholds d (interp cl) <=> ?p. p IN cl /\ pholds d p)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[interp] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) | |
[GSYM(CONJUNCT1(MATCH_MP LIST_OF_SET_PROPERTIES th))]) THEN | |
SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ITLIST; PHOLDS; set_of_list; NOT_IN_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);; | |
let HOLDS_INTERP = prove | |
(`!cl M v. FINITE cl | |
==> (holds M v (interp cl) <=> ?p. p IN cl /\ holds M v p)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[interp] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) | |
[GSYM(CONJUNCT1(MATCH_MP LIST_OF_SET_PROPERTIES th))]) THEN | |
SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ITLIST; HOLDS; set_of_list; NOT_IN_EMPTY] THEN | |
ASM_REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Assuming finite set of hypotheses. *) | |
(* ------------------------------------------------------------------------- *) | |
let PRESPROOF_REFUTATION_COMPLETE_FINITE = prove | |
(`FINITE hyps /\ | |
(!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable {interp cl | cl IN hyps}) | |
==> presproof hyps {}`, | |
REWRITE_TAC[IMAGE_CLAUSE] THEN | |
SUBGOAL_THEN | |
`!n hyps. FINITE hyps /\ | |
(CARD(UNIONS hyps) = n) /\ | |
(!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable (IMAGE interp hyps)) | |
==> presproof hyps {}` | |
(fun th -> MESON_TAC[th]) THEN | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
X_GEN_TAC `hyps:(form->bool)->bool` THEN | |
ASM_CASES_TAC `{}:form->bool IN hyps` THENL | |
[ASM_SIMP_TAC[presproof_RULES]; ALL_TAC] THEN | |
ASM_CASES_TAC `hyps:(form->bool)->bool = {}` THENL | |
[ASM_REWRITE_TAC[psatisfiable; IMAGE_CLAUSES; NOT_IN_EMPTY]; ALL_TAC] THEN | |
STRIP_TAC THEN SUBGOAL_THEN `FINITE(UNIONS hyps :form->bool)` | |
ASSUME_TAC THENL | |
[ASM_MESON_TAC[clause; FINITE_UNIONS]; ALL_TAC] THEN | |
SUBGOAL_THEN `?p. atom p /\ p IN UNIONS hyps /\ ~~p IN UNIONS hyps` | |
(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC) | |
THENL | |
[SUBGOAL_THEN `?p. literal p /\ p IN UNIONS hyps /\ ~~p IN UNIONS hyps` | |
MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[literal] THEN STRIP_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
EXISTS_TAC `~~p` THEN ASM_REWRITE_TAC[NEGATE_NEG] THEN | |
ASM_MESON_TAC[NEGATE_ATOM]] THEN | |
GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN | |
PURE_ONCE_REWRITE_TAC[NOT_EXISTS_THM] THEN | |
REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a ==> ~b \/ ~c`] THEN | |
REWRITE_TAC[IN_UNIONS; NOT_EXISTS_THM] THEN | |
REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [psatisfiable]) THEN | |
REWRITE_TAC[] THEN EXISTS_TAC `\p:form. p IN UNIONS hyps` THEN | |
REWRITE_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN X_GEN_TAC `cl:form->bool` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN | |
SUBGOAL_THEN `FINITE(cl:form->bool)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP] THEN | |
SUBGOAL_THEN `?p:form. p IN cl` MP_TAC THENL | |
[ASM_MESON_TAC[EXTENSION; NOT_IN_EMPTY]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `q:form` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `literal q` MP_TAC THENL | |
[ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
REWRITE_TAC[literal] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN | |
ASM_MESON_TAC[IN_UNIONS; NEGATE_ATOM; literal]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM]) THEN | |
ONCE_REWRITE_TAC[TAUT `(a ==> b /\ c /\ d ==> e) <=> | |
(c ==> a /\ b /\ d ==> e)`] THEN | |
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
UNDISCH_THEN `CARD (UNIONS hyps :form->bool) = n` (SUBST1_TAC o SYM) THEN | |
ABBREV_TAC `hyps' = {cl | cl IN hyps /\ ~(p IN cl) /\ ~(~~p IN cl)} UNION | |
{cl | ?cl1 cl2. cl1 IN hyps /\ cl2 IN hyps /\ | |
p IN cl1 /\ ~(~~p IN cl1) /\ | |
~~p IN cl2 /\ ~(p IN cl2) /\ | |
(cl = resolve p cl1 cl2)}` THEN | |
DISCH_THEN(MP_TAC o SPEC `hyps':(form->bool)->bool`) THEN | |
MATCH_MP_TAC(TAUT | |
`(e ==> f) /\ b /\ c /\ a /\ (c ==> d) | |
==> (a /\ b /\ c /\ d ==> e) ==> f`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] | |
PRESPROOF_TRANS) THEN | |
X_GEN_TAC `cl:form->bool` THEN EXPAND_TAC "hyps'" THEN | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN MESON_TAC[presproof_RULES]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[EXPAND_TAC "hyps'" THEN REWRITE_TAC[FINITE_UNION] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `hyps:(form->bool)->bool` THEN | |
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]; ALL_TAC] THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\(cl1,cl2). resolve p cl1 cl2) | |
{(cl1,cl2) | cl1 IN hyps /\ cl2 IN hyps}` THEN | |
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_PRODUCT] THEN | |
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[PAIR_EQ]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[GEN_TAC THEN EXPAND_TAC "hyps'" THEN | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[] THEN REWRITE_TAC[clause; resolve] THEN | |
REWRITE_TAC[FINITE_UNION; FINITE_DELETE; IN_UNION; IN_DELETE] THEN | |
ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC LET_TRANS THEN | |
EXISTS_TAC `CARD(((UNIONS hyps) DELETE p) DELETE ~~p)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL | |
[ALL_TAC; | |
ASM_SIMP_TAC[FINITE_UNIONS; FINITE_DELETE] THEN | |
ASM_MESON_TAC[clause]] THEN | |
EXPAND_TAC "hyps'" THEN | |
REWRITE_TAC[SUBSET; IN_UNIONS; IN_UNION; IN_DELETE; IN_ELIM_THM] THEN | |
REWRITE_TAC[EXTENSION; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; | |
ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE] THEN | |
ASM_REWRITE_TAC[IN_DELETE; NEGATE_REFL] THEN | |
ASM_MESON_TAC[HAS_SIZE; HAS_SIZE_0; MEMBER_NOT_EMPTY; | |
ARITH_RULE `~(n = 0) ==> n - 1 - 1 < n`]]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
UNDISCH_TAC `~psatisfiable (IMAGE interp hyps)` THEN | |
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN | |
SIMP_TAC[psatisfiable; IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `d:form->bool` THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
ONCE_REWRITE_TAC[IMP_CONJ] THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP] THEN DISCH_TAC THEN | |
ASM_CASES_TAC | |
`!cl. cl IN hyps /\ p IN cl /\ ~(~~p IN cl) | |
==> ?q. q IN (cl DELETE p) /\ pholds d q` | |
THENL | |
[EXISTS_TAC `\x:form. if x = p then F else d(x)` THEN | |
X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `~~p IN cl` THENL | |
[EXISTS_TAC `~~p` THEN ASM_SIMP_TAC[PHOLDS_NEGATE; PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `p:form IN cl` THENL | |
[UNDISCH_TAC | |
`!cl. cl IN hyps /\ p IN cl /\ ~(~~p IN cl) | |
==> (?q. q IN cl DELETE p /\ pholds d q)` THEN | |
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN | |
REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[literal] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_SIMP_TAC[PHOLDS_ATOM] THEN ASM_MESON_TAC[PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]; ALL_TAC] THEN | |
UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN | |
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN | |
EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN | |
MATCH_MP_TAC(TAUT `((a ==> c) ==> d) ==> (a \/ b ==> c) ==> d`) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `q:form` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[literal] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_SIMP_TAC[PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN | |
REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `cl1:form->bool` STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC | |
`!cl. cl IN hyps /\ ~~p IN cl /\ ~(p IN cl) | |
==> ?q. q IN (cl DELETE ~~p) /\ pholds d q` | |
THENL | |
[EXISTS_TAC `\x:form. if x = p then T else d(x)` THEN | |
X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `p:form IN cl` THENL | |
[EXISTS_TAC `p:form` THEN ASM_SIMP_TAC[PHOLDS_NEGATE; PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `~~p IN cl` THENL | |
[UNDISCH_TAC | |
`!cl. cl IN hyps /\ ~~p IN cl /\ ~(p IN cl) | |
==> (?q. q IN cl DELETE ~~p /\ pholds d q)` THEN | |
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN | |
REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[literal] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_SIMP_TAC[PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM; NEGATE_ATOM]; ALL_TAC] THEN | |
UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN | |
DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN | |
EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN | |
MATCH_MP_TAC(TAUT `((a ==> c) ==> d) ==> (a \/ b ==> c) ==> d`) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `q:form` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[literal] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_SIMP_TAC[PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[PHOLDS_ATOM]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ASM_MESON_TAC[NEGATE_ATOM]; | |
ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN | |
REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `cl2:form->bool` STRIP_ASSUME_TAC) THEN | |
UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN | |
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN | |
DISCH_THEN(MP_TAC o SPEC `resolve p cl1 cl2`) THEN | |
EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN | |
MATCH_MP_TAC(TAUT `b /\ ~c ==> ~(a \/ b ==> c)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[resolve; IN_UNION] THEN ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Via compactness etc., avoid the finiteness assumption for simplicity. *) | |
(* ------------------------------------------------------------------------- *) | |
let PRESPROOF_REFUTATION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable {interp cl | cl IN hyps}) | |
==> presproof hyps {}`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC PRESPROOF_MONO THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP UNPSATISFIABLE_FINITE_SUBSET) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:form->bool` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN | |
`?h. FINITE h /\ h SUBSET hyps /\ t SUBSET {interp cl | cl IN h}` | |
MP_TAC THENL | |
[REWRITE_TAC[IMAGE_CLAUSE] THEN MATCH_MP_TAC FINITE_SUBSET_IMAGE_IMP THEN | |
ASM_REWRITE_TAC[GSYM IMAGE_CLAUSE]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC PRESPROOF_REFUTATION_COMPLETE_FINITE THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`~(psatisfiable t)`; `t SUBSET {interp cl | cl IN h}`] THEN | |
REWRITE_TAC[PSATISFIABLE_MONO; TAUT `b ==> ~c ==> ~a <=> a /\ b ==> c`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The key lifting lemma. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("instance_of",(12,"right"));; | |
let instance_of = new_definition | |
`cl1 instance_of cl2 <=> ?i. cl1 = IMAGE (formsubst i) cl2`;; | |
let FVS = new_definition | |
`FVS(cl) = UNIONS {FV(p) | p IN cl}`;; | |
let NEGATIVE_FORMSUBST = prove | |
(`!p. negative (formsubst i p) = negative p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[negative; form_DISTINCT; Not_DEF; formsubst] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[form_DISTINCT] THEN | |
SIMP_TAC[form_INJ; LEFT_EXISTS_AND_THM; GSYM EXISTS_REFL] THEN | |
GEN_TAC THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN | |
SPEC_TAC(`r:form`,`r:form`) THEN MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF; form_DISTINCT]);; | |
let FORMSUBST_NEGATE = prove | |
(`!p i. formsubst i (~~p) = ~~(formsubst i p)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[negate; NEGATIVE_FORMSUBST] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[Not_DEF; formsubst] THEN | |
FIRST_ASSUM(X_CHOOSE_THEN `q:form` SUBST1_TAC o | |
GEN_REWRITE_RULE I [negative]) THEN | |
REWRITE_TAC[Not_DEF; form_INJ; formsubst]);; | |
let FORMSUBST_ATOM = prove | |
(`!p i. atom (formsubst i p) = atom p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; atom; LET_DEF; LET_END_DEF]);; | |
let FORMSUBST_NOT = prove | |
(`!i p. formsubst i (Not p) = Not(formsubst i p)`, | |
REWRITE_TAC[Not_DEF; formsubst]);; | |
let NOT_NOT_ATOM = prove | |
(`!p. ~atom(Not p)`, | |
REWRITE_TAC[Not_DEF; atom; form_INJ]);; | |
let FORMSUBST_LITERAL = prove | |
(`!p i. literal (formsubst i p) = literal p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
REWRITE_TAC[literal; form_DISTINCT; atom; Not_DEF] THEN | |
MAP_EVERY X_GEN_TAC [`s:form`; `r:form`] THEN STRIP_TAC THEN | |
SPEC_TAC(`r:form`,`r:form`) THEN MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF; form_DISTINCT; form_INJ] THEN | |
MESON_TAC[FORMSUBST_NOT; FORMSUBST_ATOM]);; | |
let QFREE_NOT = prove | |
(`!p. qfree(Not p) = qfree p`, | |
REWRITE_TAC[Not_DEF; qfree]);; | |
let QFREE_ATOM = prove | |
(`!p. atom p ==> qfree p`, | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom; qfree]);; | |
let QFREE_LITERAL = prove | |
(`!p. literal p ==> qfree p`, | |
REWRITE_TAC[literal] THEN MESON_TAC[QFREE_ATOM; QFREE_NOT]);; | |
let QFREE_NEGATE = prove | |
(`!p. qfree(~~p) = qfree p`, | |
GEN_TAC THEN REWRITE_TAC[negate] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[QFREE_NOT] THEN | |
FIRST_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [negative]) THEN | |
REWRITE_TAC[QFREE_NOT; Not_DEF; form_INJ]);; | |
let LIFTING_LEMMA = prove | |
(`!A B A' B' C' p. | |
clause A /\ clause B /\ (FVS(A) INTER FVS(B) = {}) /\ | |
A' instance_of A /\ B' instance_of B /\ | |
p IN A' /\ ~~p IN B' /\ (C' = resolve p A' B') | |
==> ?A1 B1. A1 SUBSET A /\ B1 SUBSET B /\ ~(A1 = {}) /\ ~(B1 = {}) /\ | |
(?i. Unifies i (A1 UNION {~~l | l IN B1})) /\ | |
!j. ismgu (A1 UNION {~~l | l IN B1}) j | |
==> C' instance_of (IMAGE (formsubst j) | |
((A DIFF A1) UNION (B DIFF B1)))`, | |
REWRITE_TAC[clause] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?i. (A' = IMAGE (formsubst i) A) /\ | |
(B' = IMAGE (formsubst i) B)` | |
(X_CHOOSE_THEN `i:num->term` (STRIP_ASSUME_TAC o GSYM)) | |
THENL | |
[UNDISCH_TAC `A' instance_of A` THEN REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `ia:num->term` SUBST1_TAC) THEN | |
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `ib:num->term` SUBST1_TAC) THEN | |
EXISTS_TAC `\x. if x IN FVS(A) then ia(x) else ib(x):term` THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE] THEN CONJ_TAC THEN | |
X_GEN_TAC `r:form` THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN | |
X_GEN_TAC `q:form` THEN | |
MATCH_MP_TAC(TAUT `(b ==> (a <=> a')) ==> (a /\ b <=> a' /\ b)`) THEN | |
DISCH_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN | |
X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[] THENL | |
[SUBGOAL_THEN `x IN FVS(A)` (fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
SUBGOAL_THEN `~(x IN FVS(A))` (fun th -> REWRITE_TAC[th]) THEN | |
UNDISCH_TAC `FVS(A) INTER FVS(B) = {}` THEN | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
ABBREV_TAC `A1 = {q | q IN A /\ (formsubst i q = p)}` THEN | |
ABBREV_TAC `B1 = {r | r IN B /\ (formsubst i r = ~~p)}` THEN | |
MAP_EVERY EXISTS_TAC [`A1:form->bool`; `B1:form->bool`] THEN | |
SUBGOAL_THEN `Unifies i (A1 UNION {~~l | l IN B1})` ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["A1"; "B1"] THEN | |
REWRITE_TAC[Unifies_DEF; IN_UNION; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_NEGATE] THEN | |
ASM_MESON_TAC[NEGATE_NEGATE; FORMSUBST_LITERAL]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `a /\ b /\ c /\ d /\ e /\ | |
(a /\ b /\ c /\ d ==> f) | |
==> a /\ b /\ c /\ d /\ e /\ f`) THEN | |
REPEAT CONJ_TAC THENL | |
[EXPAND_TAC "A1" THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; | |
EXPAND_TAC "B1" THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; | |
EXPAND_TAC "A1" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN | |
UNDISCH_TAC `p:form IN A'` THEN EXPAND_TAC "A'" THEN | |
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]; | |
EXPAND_TAC "B1" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN | |
UNDISCH_TAC `~~p IN B'` THEN EXPAND_TAC "B'" THEN | |
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]; | |
EXISTS_TAC `i:num->term` THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
STRIP_TAC THEN X_GEN_TAC `j:num->term` THEN | |
REWRITE_TAC[ISMGU] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `i:num->term`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num->term` (ASSUME_TAC o GSYM)) THEN | |
ASM_REWRITE_TAC[instance_of] THEN EXISTS_TAC `k:num->term` THEN | |
MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN | |
REWRITE_TAC[IMAGE_UNION; GSYM IMAGE_o; resolve] THEN | |
SUBGOAL_THEN `IMAGE (formsubst i) A DELETE p = | |
IMAGE (formsubst i) (A DIFF A1)` | |
SUBST1_TAC THENL | |
[EXPAND_TAC "A1" THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_DIFF; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `IMAGE (formsubst i) B DELETE ~~p = | |
IMAGE (formsubst i) (B DIFF B1)` | |
SUBST1_TAC THENL | |
[EXPAND_TAC "B1" THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_DIFF; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM IMAGE_UNION] THEN | |
SUBGOAL_THEN `!q. q IN (A DIFF A1 UNION B DIFF B1) | |
==> (formsubst k (formsubst j q) = formsubst i q)` | |
MP_TAC THENL | |
[REWRITE_TAC[IN_UNION; IN_DIFF] THEN ASM_MESON_TAC[QFREE_LITERAL]; | |
ALL_TAC] THEN | |
ABBREV_TAC `s:form->bool = A DIFF A1 UNION B DIFF B1` THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Method for renaming away (we rely on nothing but the basic property). *) | |
(* ------------------------------------------------------------------------- *) | |
let FVS_CLAUSE_FINITE = prove | |
(`!cl. clause(cl) ==> FINITE(FVS cl)`, | |
REWRITE_TAC[clause; FVS] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(MATCH_MP (TAUT `(a ==> (b <=> c)) ==> a /\ c ==> b`) | |
(SPEC_ALL FINITE_FINITE_UNIONS)) THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN `FINITE (IMAGE FV cl)` MP_TAC THENL | |
[ASM_SIMP_TAC[FINITE_IMAGE]; ALL_TAC] THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]; | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FV_FINITE]]);; | |
let RENAME_AWAY = prove | |
(`!cl s. FINITE(s) /\ clause(cl) | |
==> ?i. renaming(i) /\ (FVS(IMAGE (formsubst i) cl) INTER s = {})`, | |
let lemma = prove | |
(`((UNIONS s) INTER y = {}) <=> !x. x IN s ==> (x INTER y = {})`, | |
SET_TAC[]) in | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?n. !x. x IN s \/ x IN FVS cl ==> x < n` MP_TAC THENL | |
[REWRITE_TAC[GSYM IN_UNION] THEN | |
SUBGOAL_THEN `FINITE(s UNION FVS(cl))` MP_TAC THENL | |
[ASM_SIMP_TAC[FINITE_UNION; FVS_CLAUSE_FINITE]; ALL_TAC] THEN | |
SPEC_TAC(`s UNION FVS(cl)`,`s:num->bool`) THEN | |
MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT] THEN | |
MESON_TAC[ARITH_RULE `(x < a ==> x < a + b + 1) /\ b < a + b + 1`]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN | |
EXISTS_TAC `\x. if x < N then V(x + N) else if x < 2 * N then V(x - N) | |
else V(x)` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[renaming] THEN | |
EXISTS_TAC `\x. if x < N then V(x + N) else if x < 2 * N then V(x - N) | |
else V(x)` THEN | |
REWRITE_TAC[] THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_DEF] THEN | |
REWRITE_TAC[TERMSUBST_TERMSUBST] THEN GEN_TAC THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN | |
MATCH_MP_TAC TERMSUBST_VALUATION THEN | |
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[termsubst; o_THM] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[termsubst]) THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB]) THEN | |
AP_TERM_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[FVS; lemma] THEN | |
SIMP_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM; IN_ELIM_THM; | |
LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!x. x IN FV(r) ==> x < N:num` ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `x:num` THEN REWRITE_TAC[FORMSUBST_FV] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `y:num` MP_TAC) THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]) THEN | |
ASM_MESON_TAC[ARITH_RULE `~(x + N < N)`; | |
ARITH_RULE `y < 2 * N ==> y - N < N`]);; | |
let rename = new_specification ["rename"] | |
(REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] RENAME_AWAY);; | |
(* ------------------------------------------------------------------------- *) | |
(* General resolution. *) | |
(* ------------------------------------------------------------------------- *) | |
let resproof_RULES,resproof_INDUCT,resproof_CASES = new_inductive_definition | |
`(!cl. cl IN hyps ==> resproof hyps cl) /\ | |
(!cl1 cl2 cl2' ps1 ps2 i. | |
resproof hyps cl1 /\ resproof hyps cl2 /\ | |
(IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ | |
ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ | |
(?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ | |
(mgu (ps1 UNION {~~p | p IN ps2}) = i) | |
==> resproof hyps | |
(IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Refutation completeness of resolution. *) | |
(* ------------------------------------------------------------------------- *) | |
let PHOLDS_FORMSUBST = prove | |
(`!p i d. qfree(p) | |
==> (pholds d (formsubst i p) <=> pholds (d o formsubst i) p)`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
SIMP_TAC[o_THM; qfree; pholds; formsubst]);; | |
let QFREE_INTERP = prove | |
(`!cl. clause cl ==> qfree(interp cl)`, | |
REWRITE_TAC[clause; interp] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `!p. MEM p (list_of_set cl) ==> qfree p` MP_TAC THENL | |
[ASM_MESON_TAC[MEM_LIST_OF_SET; QFREE_LITERAL]; ALL_TAC] THEN | |
SPEC_TAC(`list_of_set cl :form list`,`l:form list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; ITLIST; Or_DEF; qfree] THEN | |
ASM_MESON_TAC[]);; | |
let PHOLDS_INTERP_IMAGE = prove | |
(`!cl v d. clause cl | |
==> (pholds d (interp (IMAGE (formsubst v) cl)) <=> | |
pholds d (formsubst v (interp cl)))`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[clause]) THEN | |
ASM_SIMP_TAC[QFREE_INTERP; PHOLDS_FORMSUBST] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; QFREE_LITERAL; FINITE_IMAGE] THEN | |
REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[PHOLDS_FORMSUBST; QFREE_LITERAL]);; | |
let IMAGE_FORMSUBST_CLAUSE = prove | |
(`!v cl. clause(cl) ==> clause(IMAGE (formsubst v) cl)`, | |
SIMP_TAC[clause; IN_IMAGE; FINITE_IMAGE] THEN | |
MESON_TAC[FORMSUBST_LITERAL]);; | |
let INSTANCE_OF_EMPTY = prove | |
(`!cl. {} instance_of cl ==> (cl = {})`, | |
REWRITE_TAC[instance_of; EXTENSION; NOT_IN_EMPTY; IN_IMAGE] THEN | |
MESON_TAC[]);; | |
let RESPROOF_CLAUSE = prove | |
(`(!cl. cl IN hyps ==> clause cl) | |
==> !cl. resproof hyps cl ==> clause cl`, | |
let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in | |
DISCH_TAC THEN MATCH_MP_TAC resproof_INDUCT THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN | |
EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; | |
let RESOLUTION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). | |
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ | |
M satisfies (IMAGE interp hyps)) | |
==> resproof hyps {}`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`~(psatisfiable | |
{interp cl | | |
cl IN {IMAGE(formsubst v) cl | cl,v | cl IN hyps}})` | |
MP_TAC THENL | |
[REWRITE_TAC[psatisfiable] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC th THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN | |
REWRITE_TAC[psatisfies] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] | |
PRESPROOF_REFUTATION_COMPLETE)) THEN | |
ANTS_TAC THENL | |
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!cl0. presproof {IMAGE (formsubst v) cl | cl,v | cl IN hyps} cl0 | |
==> ?cl. resproof hyps cl /\ cl0 instance_of cl` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN | |
MESON_TAC[INSTANCE_OF_EMPTY]] THEN | |
MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN | |
MESON_TAC[resproof_RULES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) | |
MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) | |
STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPECL | |
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; | |
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] | |
LIFTING_LEMMA) THEN | |
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN | |
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; RESPROOF_CLAUSE]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[renaming] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN | |
ANTS_TAC THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[RESPROOF_CLAUSE]; | |
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; RESPROOF_CLAUSE]; | |
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN | |
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN | |
EXISTS_TAC `termsubst k o (j:num->term)` THEN | |
SUBGOAL_THEN | |
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` | |
MP_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; | |
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN | |
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` | |
MP_TAC)) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN | |
REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET]; | |
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; | |
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL resproof_RULES)) THEN | |
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Variant with an explicit "is a resolvent" predicate. *) | |
(* ------------------------------------------------------------------------- *) | |
let isaresolvent = new_definition | |
`isaresolvent cl (cl1,cl2) <=> | |
let cl2' = IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 in | |
?ps1 ps2. | |
ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ | |
(?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ | |
let i = mgu (ps1 UNION {~~p | p IN ps2}) in | |
cl = IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))`;; | |
let RESPROOF_RULES = prove | |
(`!hyps. (!cl. cl IN hyps ==> resproof hyps cl) /\ | |
(!cl1 cl2 cl. | |
resproof hyps cl1 /\ resproof hyps cl2 /\ | |
isaresolvent cl (cl1,cl2) | |
==> resproof hyps cl)`, | |
REWRITE_TAC[isaresolvent] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
REWRITE_TAC[resproof_RULES] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL resproof_RULES)) THEN | |
EXISTS_TAC `cl2:form->bool` THEN ASM_REWRITE_TAC[] THEN | |
EXISTS_TAC `i:num->term` THEN ASM_REWRITE_TAC[]);; | |