(* ========================================================================= *) (* Completeness of first order resolution. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* We want to restrict ourselves to finite lists of literals. *) (* ------------------------------------------------------------------------- *) let atom = new_recursive_definition form_RECURSION `(atom False <=> F) /\ (atom (Atom p l) <=> T) /\ (atom (q --> r) <=> F) /\ (atom (!!x q) <=> F)`;; let literal = new_definition `literal p <=> atom(p) \/ ?q. atom(q) /\ (p = Not q)`;; let clause = new_definition `clause cl <=> FINITE cl /\ !p. p IN cl ==> literal p`;; let LITERAL = prove (`literal(Atom r args) /\ literal(Not(Atom r args))`, MESON_TAC[literal; atom]);; let ATOM = prove (`atom p <=> ?q l. p = Atom q l`, MESON_TAC[atom; form_CASES]);; (* ------------------------------------------------------------------------- *) (* Negation on literals. *) (* ------------------------------------------------------------------------- *) let negative = new_definition `negative p <=> ?q. p = Not q`;; let positive = new_definition `positive p <=> ~(negative p)`;; let negate = new_definition `~~p = if negative p then @q. (Not q = p) else Not p`;; let PHOLDS_NEGATE = prove (`pholds d (~~p) <=> ~(pholds d p)`, REWRITE_TAC[negate] THEN COND_CASES_TAC THEN REWRITE_TAC[PHOLDS] THEN POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[negative]) THEN REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL; PHOLDS]);; let HOLDS_NEGATE = prove (`holds M v (~~p) <=> ~(holds M v p)`, REWRITE_TAC[negate] THEN COND_CASES_TAC THEN REWRITE_TAC[HOLDS] THEN POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[negative]) THEN REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL; HOLDS]);; let NEGATE_NEG = prove (`~~(Not p) = p`, REWRITE_TAC[negate; negative; Not_DEF; form_INJ; GSYM EXISTS_REFL]);; let NEGATE_ATOM = prove (`!p. atom p ==> (~~p = Not p)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom] THEN REWRITE_TAC[negate; negative; Not_DEF; form_DISTINCT]);; let NEGATE_REFL = prove (`!p. ~(~~p = p)`, MESON_TAC[PHOLDS_NEGATE]);; let PHOLDS_ATOM = prove (`!p d. atom(p) ==> (pholds d p = d(p))`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom; pholds]);; let NEGATE_NEGATE = prove (`!p. literal p ==> (~~(~~p) = p)`, REWRITE_TAC[literal] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NEGATE_ATOM; NEGATE_NEG]);; (* ------------------------------------------------------------------------- *) (* Basic resolution step. *) (* ------------------------------------------------------------------------- *) let resolve = new_definition `resolve (p:form) cl1 cl2 = (cl1 DELETE p) UNION (cl2 DELETE ~~p)`;; (* ------------------------------------------------------------------------- *) (* Inductive definition of propositional resolution. *) (* ------------------------------------------------------------------------- *) let presproof_RULES,presproof_INDUCT,presproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> presproof hyps cl) /\ (!p cl1 cl2. presproof hyps cl1 /\ presproof hyps cl2 /\ p IN cl1 /\ ~~p IN cl2 ==> presproof hyps (resolve p cl1 cl2))`;; (* ------------------------------------------------------------------------- *) (* Interpretation of clause as formula (meaningful only if it's a clause). *) (* ------------------------------------------------------------------------- *) let interp = new_definition `interp cl = ITLIST (||) (list_of_set cl) False`;; (* ------------------------------------------------------------------------- *) (* Compactness variant. *) (* ------------------------------------------------------------------------- *) let UNPSATISFIABLE_FINITE_SUBSET = prove (`!s. ~(psatisfiable s) ==> ?t. FINITE t /\ t SUBSET s /\ ~(psatisfiable t)`, REWRITE_TAC[psatisfiable] THEN MESON_TAC[COMPACT_PROP]);; (* ------------------------------------------------------------------------- *) (* Monotonicity w.r.t. hyps. *) (* ------------------------------------------------------------------------- *) let PRESPROOF_MONO = prove (`!hyps1 hyps2 c. presproof hyps1 c /\ hyps1 SUBSET hyps2 ==> presproof hyps2 c`, GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[presproof_RULES; SUBSET]);; let PRESPROOF_TRANS = prove (`!hyps hyps' c. (!c'. c' IN hyps' ==> presproof hyps c') /\ presproof hyps' c ==> presproof hyps c`, GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[presproof_RULES]);; (* ------------------------------------------------------------------------- *) (* Lemmas. *) (* ------------------------------------------------------------------------- *) let IMAGE_CLAUSE = prove (`{interp cl | cl IN hyps} = IMAGE interp hyps`, REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; CONJ_ACI]);; let PHOLDS_INTERP = prove (`!cl d. FINITE cl ==> (pholds d (interp cl) <=> ?p. p IN cl /\ pholds d p)`, REPEAT STRIP_TAC THEN REWRITE_TAC[interp] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM(CONJUNCT1(MATCH_MP LIST_OF_SET_PROPERTIES th))]) THEN SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; PHOLDS; set_of_list; NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);; let HOLDS_INTERP = prove (`!cl M v. FINITE cl ==> (holds M v (interp cl) <=> ?p. p IN cl /\ holds M v p)`, REPEAT STRIP_TAC THEN REWRITE_TAC[interp] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM(CONJUNCT1(MATCH_MP LIST_OF_SET_PROPERTIES th))]) THEN SPEC_TAC(`list_of_set(cl:form->bool)`,`l:form list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; HOLDS; set_of_list; NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Assuming finite set of hypotheses. *) (* ------------------------------------------------------------------------- *) let PRESPROOF_REFUTATION_COMPLETE_FINITE = prove (`FINITE hyps /\ (!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable {interp cl | cl IN hyps}) ==> presproof hyps {}`, REWRITE_TAC[IMAGE_CLAUSE] THEN SUBGOAL_THEN `!n hyps. FINITE hyps /\ (CARD(UNIONS hyps) = n) /\ (!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable (IMAGE interp hyps)) ==> presproof hyps {}` (fun th -> MESON_TAC[th]) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `hyps:(form->bool)->bool` THEN ASM_CASES_TAC `{}:form->bool IN hyps` THENL [ASM_SIMP_TAC[presproof_RULES]; ALL_TAC] THEN ASM_CASES_TAC `hyps:(form->bool)->bool = {}` THENL [ASM_REWRITE_TAC[psatisfiable; IMAGE_CLAUSES; NOT_IN_EMPTY]; ALL_TAC] THEN STRIP_TAC THEN SUBGOAL_THEN `FINITE(UNIONS hyps :form->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[clause; FINITE_UNIONS]; ALL_TAC] THEN SUBGOAL_THEN `?p. atom p /\ p IN UNIONS hyps /\ ~~p IN UNIONS hyps` (X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC) THENL [SUBGOAL_THEN `?p. literal p /\ p IN UNIONS hyps /\ ~~p IN UNIONS hyps` MP_TAC THENL [ALL_TAC; REWRITE_TAC[literal] THEN STRIP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `~~p` THEN ASM_REWRITE_TAC[NEGATE_NEG] THEN ASM_MESON_TAC[NEGATE_ATOM]] THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~ p`] THEN PURE_ONCE_REWRITE_TAC[NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a ==> ~b \/ ~c`] THEN REWRITE_TAC[IN_UNIONS; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [psatisfiable]) THEN REWRITE_TAC[] THEN EXISTS_TAC `\p:form. p IN UNIONS hyps` THEN REWRITE_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `cl:form->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN SUBGOAL_THEN `FINITE(cl:form->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_SIMP_TAC[PHOLDS_INTERP] THEN SUBGOAL_THEN `?p:form. p IN cl` MP_TAC THENL [ASM_MESON_TAC[EXTENSION; NOT_IN_EMPTY]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN DISCH_TAC THEN SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN REWRITE_TAC[literal] THEN STRIP_TAC THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN ASM_MESON_TAC[IN_UNIONS; NEGATE_ATOM; literal]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM]) THEN ONCE_REWRITE_TAC[TAUT `(a ==> b /\ c /\ d ==> e) <=> (c ==> a /\ b /\ d ==> e)`] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN UNDISCH_THEN `CARD (UNIONS hyps :form->bool) = n` (SUBST1_TAC o SYM) THEN ABBREV_TAC `hyps' = {cl | cl IN hyps /\ ~(p IN cl) /\ ~(~~p IN cl)} UNION {cl | ?cl1 cl2. cl1 IN hyps /\ cl2 IN hyps /\ p IN cl1 /\ ~(~~p IN cl1) /\ ~~p IN cl2 /\ ~(p IN cl2) /\ (cl = resolve p cl1 cl2)}` THEN DISCH_THEN(MP_TAC o SPEC `hyps':(form->bool)->bool`) THEN MATCH_MP_TAC(TAUT `(e ==> f) /\ b /\ c /\ a /\ (c ==> d) ==> (a /\ b /\ c /\ d ==> e) ==> f`) THEN CONJ_TAC THENL [MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] PRESPROOF_TRANS) THEN X_GEN_TAC `cl:form->bool` THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN MESON_TAC[presproof_RULES]; ALL_TAC] THEN CONJ_TAC THENL [EXPAND_TAC "hyps'" THEN REWRITE_TAC[FINITE_UNION] THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `hyps:(form->bool)->bool` THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]; ALL_TAC] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (\(cl1,cl2). resolve p cl1 cl2) {(cl1,cl2) | cl1 IN hyps /\ cl2 IN hyps}` THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_PRODUCT] THEN REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[PAIR_EQ]; ALL_TAC] THEN CONJ_TAC THENL [GEN_TAC THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[clause; resolve] THEN REWRITE_TAC[FINITE_UNION; FINITE_DELETE; IN_UNION; IN_DELETE] THEN ASM_MESON_TAC[clause]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `CARD(((UNIONS hyps) DELETE p) DELETE ~~p)` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[FINITE_UNIONS; FINITE_DELETE] THEN ASM_MESON_TAC[clause]] THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_UNION; IN_DELETE; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSION; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE] THEN ASM_REWRITE_TAC[IN_DELETE; NEGATE_REFL] THEN ASM_MESON_TAC[HAS_SIZE; HAS_SIZE_0; MEMBER_NOT_EMPTY; ARITH_RULE `~(n = 0) ==> n - 1 - 1 < n`]]; ALL_TAC] THEN DISCH_TAC THEN UNDISCH_TAC `~psatisfiable (IMAGE interp hyps)` THEN REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN SIMP_TAC[psatisfiable; IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:form->bool` THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[PHOLDS_INTERP] THEN DISCH_TAC THEN ASM_CASES_TAC `!cl. cl IN hyps /\ p IN cl /\ ~(~~p IN cl) ==> ?q. q IN (cl DELETE p) /\ pholds d q` THENL [EXISTS_TAC `\x:form. if x = p then F else d(x)` THEN X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `~~p IN cl` THENL [EXISTS_TAC `~~p` THEN ASM_SIMP_TAC[PHOLDS_NEGATE; PHOLDS_ATOM]; ALL_TAC] THEN ASM_CASES_TAC `p:form IN cl` THENL [UNDISCH_TAC `!cl. cl IN hyps /\ p IN cl /\ ~(~~p IN cl) ==> (?q. q IN cl DELETE p /\ pholds d q)` THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[literal] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_SIMP_TAC[PHOLDS_ATOM] THEN ASM_MESON_TAC[PHOLDS_ATOM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]; ALL_TAC] THEN UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC(TAUT `((a ==> c) ==> d) ==> (a \/ b ==> c) ==> d`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[literal] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_SIMP_TAC[PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_MESON_TAC[PHOLDS_ATOM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `cl1:form->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `!cl. cl IN hyps /\ ~~p IN cl /\ ~(p IN cl) ==> ?q. q IN (cl DELETE ~~p) /\ pholds d q` THENL [EXISTS_TAC `\x:form. if x = p then T else d(x)` THEN X_GEN_TAC `cl:form->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `p:form IN cl` THENL [EXISTS_TAC `p:form` THEN ASM_SIMP_TAC[PHOLDS_NEGATE; PHOLDS_ATOM]; ALL_TAC] THEN ASM_CASES_TAC `~~p IN cl` THENL [UNDISCH_TAC `!cl. cl IN hyps /\ ~~p IN cl /\ ~(p IN cl) ==> (?q. q IN cl DELETE ~~p /\ pholds d q)` THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[literal] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_SIMP_TAC[PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS_ATOM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM; NEGATE_ATOM]; ALL_TAC] THEN UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool`) THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC(TAUT `((a ==> c) ==> d) ==> (a \/ b ==> c) ==> d`) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `literal q` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[literal] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_SIMP_TAC[PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_MESON_TAC[PHOLDS_ATOM]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_SIMP_TAC[PHOLDS; PHOLDS_ATOM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[NEGATE_ATOM]; ASM_MESON_TAC[PHOLDS; PHOLDS_ATOM]]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `cl2:form->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!x. x IN hyps' ==> (?p. p IN x /\ pholds d p)` THEN MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN DISCH_THEN(MP_TAC o SPEC `resolve p cl1 cl2`) THEN EXPAND_TAC "hyps'" THEN REWRITE_TAC[IN_UNION] THEN MATCH_MP_TAC(TAUT `b /\ ~c ==> ~(a \/ b ==> c)`) THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; REWRITE_TAC[resolve; IN_UNION] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Via compactness etc., avoid the finiteness assumption for simplicity. *) (* ------------------------------------------------------------------------- *) let PRESPROOF_REFUTATION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(psatisfiable {interp cl | cl IN hyps}) ==> presproof hyps {}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC PRESPROOF_MONO THEN FIRST_ASSUM(MP_TAC o MATCH_MP UNPSATISFIABLE_FINITE_SUBSET) THEN DISCH_THEN(X_CHOOSE_THEN `t:form->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?h. FINITE h /\ h SUBSET hyps /\ t SUBSET {interp cl | cl IN h}` MP_TAC THENL [REWRITE_TAC[IMAGE_CLAUSE] THEN MATCH_MP_TAC FINITE_SUBSET_IMAGE_IMP THEN ASM_REWRITE_TAC[GSYM IMAGE_CLAUSE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC PRESPROOF_REFUTATION_COMPLETE_FINITE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN MAP_EVERY UNDISCH_TAC [`~(psatisfiable t)`; `t SUBSET {interp cl | cl IN h}`] THEN REWRITE_TAC[PSATISFIABLE_MONO; TAUT `b ==> ~c ==> ~a <=> a /\ b ==> c`]);; (* ------------------------------------------------------------------------- *) (* The key lifting lemma. *) (* ------------------------------------------------------------------------- *) parse_as_infix("instance_of",(12,"right"));; let instance_of = new_definition `cl1 instance_of cl2 <=> ?i. cl1 = IMAGE (formsubst i) cl2`;; let FVS = new_definition `FVS(cl) = UNIONS {FV(p) | p IN cl}`;; let NEGATIVE_FORMSUBST = prove (`!p. negative (formsubst i p) = negative p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[negative; form_DISTINCT; Not_DEF; formsubst] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[form_DISTINCT] THEN SIMP_TAC[form_INJ; LEFT_EXISTS_AND_THM; GSYM EXISTS_REFL] THEN GEN_TAC THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN SPEC_TAC(`r:form`,`r:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF; form_DISTINCT]);; let FORMSUBST_NEGATE = prove (`!p i. formsubst i (~~p) = ~~(formsubst i p)`, REPEAT STRIP_TAC THEN REWRITE_TAC[negate; NEGATIVE_FORMSUBST] THEN COND_CASES_TAC THEN REWRITE_TAC[Not_DEF; formsubst] THEN FIRST_ASSUM(X_CHOOSE_THEN `q:form` SUBST1_TAC o GEN_REWRITE_RULE I [negative]) THEN REWRITE_TAC[Not_DEF; form_INJ; formsubst]);; let FORMSUBST_ATOM = prove (`!p i. atom (formsubst i p) = atom p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; atom; LET_DEF; LET_END_DEF]);; let FORMSUBST_NOT = prove (`!i p. formsubst i (Not p) = Not(formsubst i p)`, REWRITE_TAC[Not_DEF; formsubst]);; let NOT_NOT_ATOM = prove (`!p. ~atom(Not p)`, REWRITE_TAC[Not_DEF; atom; form_INJ]);; let FORMSUBST_LITERAL = prove (`!p i. literal (formsubst i p) = literal p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[literal; form_DISTINCT; atom; Not_DEF] THEN MAP_EVERY X_GEN_TAC [`s:form`; `r:form`] THEN STRIP_TAC THEN SPEC_TAC(`r:form`,`r:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; LET_DEF; LET_END_DEF; form_DISTINCT; form_INJ] THEN MESON_TAC[FORMSUBST_NOT; FORMSUBST_ATOM]);; let QFREE_NOT = prove (`!p. qfree(Not p) = qfree p`, REWRITE_TAC[Not_DEF; qfree]);; let QFREE_ATOM = prove (`!p. atom p ==> qfree p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[atom; qfree]);; let QFREE_LITERAL = prove (`!p. literal p ==> qfree p`, REWRITE_TAC[literal] THEN MESON_TAC[QFREE_ATOM; QFREE_NOT]);; let QFREE_NEGATE = prove (`!p. qfree(~~p) = qfree p`, GEN_TAC THEN REWRITE_TAC[negate] THEN COND_CASES_TAC THEN REWRITE_TAC[QFREE_NOT] THEN FIRST_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [negative]) THEN REWRITE_TAC[QFREE_NOT; Not_DEF; form_INJ]);; let LIFTING_LEMMA = prove (`!A B A' B' C' p. clause A /\ clause B /\ (FVS(A) INTER FVS(B) = {}) /\ A' instance_of A /\ B' instance_of B /\ p IN A' /\ ~~p IN B' /\ (C' = resolve p A' B') ==> ?A1 B1. A1 SUBSET A /\ B1 SUBSET B /\ ~(A1 = {}) /\ ~(B1 = {}) /\ (?i. Unifies i (A1 UNION {~~l | l IN B1})) /\ !j. ismgu (A1 UNION {~~l | l IN B1}) j ==> C' instance_of (IMAGE (formsubst j) ((A DIFF A1) UNION (B DIFF B1)))`, REWRITE_TAC[clause] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?i. (A' = IMAGE (formsubst i) A) /\ (B' = IMAGE (formsubst i) B)` (X_CHOOSE_THEN `i:num->term` (STRIP_ASSUME_TAC o GSYM)) THENL [UNDISCH_TAC `A' instance_of A` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `ia:num->term` SUBST1_TAC) THEN UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `ib:num->term` SUBST1_TAC) THEN EXISTS_TAC `\x. if x IN FVS(A) then ia(x) else ib(x):term` THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN CONJ_TAC THEN X_GEN_TAC `r:form` THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `q:form` THEN MATCH_MP_TAC(TAUT `(b ==> (a <=> a')) ==> (a /\ b <=> a' /\ b)`) THEN DISCH_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[] THENL [SUBGOAL_THEN `x IN FVS(A)` (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; SUBGOAL_THEN `~(x IN FVS(A))` (fun th -> REWRITE_TAC[th]) THEN UNDISCH_TAC `FVS(A) INTER FVS(B) = {}` THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]]; ALL_TAC] THEN ABBREV_TAC `A1 = {q | q IN A /\ (formsubst i q = p)}` THEN ABBREV_TAC `B1 = {r | r IN B /\ (formsubst i r = ~~p)}` THEN MAP_EVERY EXISTS_TAC [`A1:form->bool`; `B1:form->bool`] THEN SUBGOAL_THEN `Unifies i (A1 UNION {~~l | l IN B1})` ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["A1"; "B1"] THEN REWRITE_TAC[Unifies_DEF; IN_UNION; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_NEGATE] THEN ASM_MESON_TAC[NEGATE_NEGATE; FORMSUBST_LITERAL]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ b /\ c /\ d /\ e /\ (a /\ b /\ c /\ d ==> f) ==> a /\ b /\ c /\ d /\ e /\ f`) THEN REPEAT CONJ_TAC THENL [EXPAND_TAC "A1" THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; EXPAND_TAC "B1" THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; EXPAND_TAC "A1" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN UNDISCH_TAC `p:form IN A'` THEN EXPAND_TAC "A'" THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]; EXPAND_TAC "B1" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN UNDISCH_TAC `~~p IN B'` THEN EXPAND_TAC "B'" THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]; EXISTS_TAC `i:num->term` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN STRIP_TAC THEN X_GEN_TAC `j:num->term` THEN REWRITE_TAC[ISMGU] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `i:num->term`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` (ASSUME_TAC o GSYM)) THEN ASM_REWRITE_TAC[instance_of] THEN EXISTS_TAC `k:num->term` THEN MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN REWRITE_TAC[IMAGE_UNION; GSYM IMAGE_o; resolve] THEN SUBGOAL_THEN `IMAGE (formsubst i) A DELETE p = IMAGE (formsubst i) (A DIFF A1)` SUBST1_TAC THENL [EXPAND_TAC "A1" THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_DIFF; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `IMAGE (formsubst i) B DELETE ~~p = IMAGE (formsubst i) (B DIFF B1)` SUBST1_TAC THENL [EXPAND_TAC "B1" THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_DIFF; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM IMAGE_UNION] THEN SUBGOAL_THEN `!q. q IN (A DIFF A1 UNION B DIFF B1) ==> (formsubst k (formsubst j q) = formsubst i q)` MP_TAC THENL [REWRITE_TAC[IN_UNION; IN_DIFF] THEN ASM_MESON_TAC[QFREE_LITERAL]; ALL_TAC] THEN ABBREV_TAC `s:form->bool = A DIFF A1 UNION B DIFF B1` THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Method for renaming away (we rely on nothing but the basic property). *) (* ------------------------------------------------------------------------- *) let FVS_CLAUSE_FINITE = prove (`!cl. clause(cl) ==> FINITE(FVS cl)`, REWRITE_TAC[clause; FVS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MATCH_MP (TAUT `(a ==> (b <=> c)) ==> a /\ c ==> b`) (SPEC_ALL FINITE_FINITE_UNIONS)) THEN CONJ_TAC THENL [SUBGOAL_THEN `FINITE (IMAGE FV cl)` MP_TAC THENL [ASM_SIMP_TAC[FINITE_IMAGE]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FV_FINITE]]);; let RENAME_AWAY = prove (`!cl s. FINITE(s) /\ clause(cl) ==> ?i. renaming(i) /\ (FVS(IMAGE (formsubst i) cl) INTER s = {})`, let lemma = prove (`((UNIONS s) INTER y = {}) <=> !x. x IN s ==> (x INTER y = {})`, SET_TAC[]) in REPEAT STRIP_TAC THEN SUBGOAL_THEN `?n. !x. x IN s \/ x IN FVS cl ==> x < n` MP_TAC THENL [REWRITE_TAC[GSYM IN_UNION] THEN SUBGOAL_THEN `FINITE(s UNION FVS(cl))` MP_TAC THENL [ASM_SIMP_TAC[FINITE_UNION; FVS_CLAUSE_FINITE]; ALL_TAC] THEN SPEC_TAC(`s UNION FVS(cl)`,`s:num->bool`) THEN MATCH_MP_TAC FINITE_INDUCT THEN REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[IN_INSERT] THEN MESON_TAC[ARITH_RULE `(x < a ==> x < a + b + 1) /\ b < a + b + 1`]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `\x. if x < N then V(x + N) else if x < 2 * N then V(x - N) else V(x)` THEN CONJ_TAC THENL [REWRITE_TAC[renaming] THEN EXISTS_TAC `\x. if x < N then V(x + N) else if x < 2 * N then V(x - N) else V(x)` THEN REWRITE_TAC[] THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_DEF] THEN REWRITE_TAC[TERMSUBST_TERMSUBST] THEN GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN MATCH_MP_TAC TERMSUBST_VALUATION THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[termsubst; o_THM] THEN POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT(COND_CASES_TAC THEN REWRITE_TAC[termsubst]) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB]) THEN AP_TERM_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[FVS; lemma] THEN SIMP_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `r:form` THEN STRIP_TAC THEN SUBGOAL_THEN `!x. x IN FV(r) ==> x < N:num` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[FVS; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `y:num` MP_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]) THEN ASM_MESON_TAC[ARITH_RULE `~(x + N < N)`; ARITH_RULE `y < 2 * N ==> y - N < N`]);; let rename = new_specification ["rename"] (REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] RENAME_AWAY);; (* ------------------------------------------------------------------------- *) (* General resolution. *) (* ------------------------------------------------------------------------- *) let resproof_RULES,resproof_INDUCT,resproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> resproof hyps cl) /\ (!cl1 cl2 cl2' ps1 ps2 i. resproof hyps cl1 /\ resproof hyps cl2 /\ (IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ (mgu (ps1 UNION {~~p | p IN ps2}) = i) ==> resproof hyps (IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; (* ------------------------------------------------------------------------- *) (* Refutation completeness of resolution. *) (* ------------------------------------------------------------------------- *) let PHOLDS_FORMSUBST = prove (`!p i d. qfree(p) ==> (pholds d (formsubst i p) <=> pholds (d o formsubst i) p)`, MATCH_MP_TAC form_INDUCTION THEN SIMP_TAC[o_THM; qfree; pholds; formsubst]);; let QFREE_INTERP = prove (`!cl. clause cl ==> qfree(interp cl)`, REWRITE_TAC[clause; interp] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!p. MEM p (list_of_set cl) ==> qfree p` MP_TAC THENL [ASM_MESON_TAC[MEM_LIST_OF_SET; QFREE_LITERAL]; ALL_TAC] THEN SPEC_TAC(`list_of_set cl :form list`,`l:form list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; ITLIST; Or_DEF; qfree] THEN ASM_MESON_TAC[]);; let PHOLDS_INTERP_IMAGE = prove (`!cl v d. clause cl ==> (pholds d (interp (IMAGE (formsubst v) cl)) <=> pholds d (formsubst v (interp cl)))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[clause]) THEN ASM_SIMP_TAC[QFREE_INTERP; PHOLDS_FORMSUBST] THEN ASM_SIMP_TAC[PHOLDS_INTERP; QFREE_LITERAL; FINITE_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[PHOLDS_FORMSUBST; QFREE_LITERAL]);; let IMAGE_FORMSUBST_CLAUSE = prove (`!v cl. clause(cl) ==> clause(IMAGE (formsubst v) cl)`, SIMP_TAC[clause; IN_IMAGE; FINITE_IMAGE] THEN MESON_TAC[FORMSUBST_LITERAL]);; let INSTANCE_OF_EMPTY = prove (`!cl. {} instance_of cl ==> (cl = {})`, REWRITE_TAC[instance_of; EXTENSION; NOT_IN_EMPTY; IN_IMAGE] THEN MESON_TAC[]);; let RESPROOF_CLAUSE = prove (`(!cl. cl IN hyps ==> clause cl) ==> !cl. resproof hyps cl ==> clause cl`, let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in DISCH_TAC THEN MATCH_MP_TAC resproof_INDUCT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; let RESOLUTION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp hyps)) ==> resproof hyps {}`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `~(psatisfiable {interp cl | cl IN {IMAGE(formsubst v) cl | cl,v | cl IN hyps}})` MP_TAC THENL [REWRITE_TAC[psatisfiable] THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN REWRITE_TAC[psatisfies] THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PRESPROOF_REFUTATION_COMPLETE)) THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN SUBGOAL_THEN `!cl0. presproof {IMAGE (formsubst v) cl | cl,v | cl IN hyps} cl0 ==> ?cl. resproof hyps cl /\ cl0 instance_of cl` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN MESON_TAC[INSTANCE_OF_EMPTY]] THEN MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN MESON_TAC[resproof_RULES]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] LIFTING_LEMMA) THEN ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN ANTS_TAC THENL [ASM_MESON_TAC[FVS_CLAUSE_FINITE; RESPROOF_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[renaming] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN ANTS_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[RESPROOF_CLAUSE]; ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; RESPROOF_CLAUSE]; ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN EXISTS_TAC `termsubst k o (j:num->term)` THEN SUBGOAL_THEN `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` MP_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; ALL_TAC] THEN REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET]; SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[RESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[RESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL resproof_RULES)) THEN EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Variant with an explicit "is a resolvent" predicate. *) (* ------------------------------------------------------------------------- *) let isaresolvent = new_definition `isaresolvent cl (cl1,cl2) <=> let cl2' = IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 in ?ps1 ps2. ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ let i = mgu (ps1 UNION {~~p | p IN ps2}) in cl = IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))`;; let RESPROOF_RULES = prove (`!hyps. (!cl. cl IN hyps ==> resproof hyps cl) /\ (!cl1 cl2 cl. resproof hyps cl1 /\ resproof hyps cl2 /\ isaresolvent cl (cl1,cl2) ==> resproof hyps cl)`, REWRITE_TAC[isaresolvent] THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[resproof_RULES] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL resproof_RULES)) THEN EXISTS_TAC `cl2:form->bool` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `i:num->term` THEN ASM_REWRITE_TAC[]);;