Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Properties of real polynomials (not canonically represented). *) | |
(* ========================================================================= *) | |
needs "Library/analysis.ml";; | |
prioritize_real();; | |
parse_as_infix("++",(16,"right"));; | |
parse_as_infix("**",(20,"right"));; | |
parse_as_infix("##",(20,"right"));; | |
parse_as_infix("divides",(14,"right"));; | |
parse_as_infix("exp",(22,"right"));; | |
do_list override_interface | |
["++",`poly_add:real list->real list->real list`; | |
"**",`poly_mul:real list->real list->real list`; | |
"##",`poly_cmul:real->real list->real list`; | |
"neg",`poly_neg:real list->real list`; | |
"exp",`poly_exp:real list -> num -> real list`; | |
"diff",`poly_diff:real list->real list`];; | |
overload_interface ("divides",`poly_divides:real list->real list->bool`);; | |
(* ------------------------------------------------------------------------- *) | |
(* Application of polynomial as a real function. *) | |
(* ------------------------------------------------------------------------- *) | |
let poly = new_recursive_definition list_RECURSION | |
`(poly [] x = &0) /\ | |
(poly (CONS h t) x = h + x * poly t x)`;; | |
let POLY_CONST = prove | |
(`!c x. poly [c] x = c`, | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; | |
let POLY_X = prove | |
(`!c x. poly [&0; &1] x = x`, | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Arithmetic operations on polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let poly_add = new_recursive_definition list_RECURSION | |
`([] ++ l2 = l2) /\ | |
((CONS h t) ++ l2 = | |
(if l2 = [] then CONS h t | |
else CONS (h + HD l2) (t ++ TL l2)))`;; | |
let poly_cmul = new_recursive_definition list_RECURSION | |
`(c ## [] = []) /\ | |
(c ## (CONS h t) = CONS (c * h) (c ## t))`;; | |
let poly_neg = new_definition | |
`neg = (##) (--(&1))`;; | |
let poly_mul = new_recursive_definition list_RECURSION | |
`([] ** l2 = []) /\ | |
((CONS h t) ** l2 = | |
(if t = [] then h ## l2 | |
else (h ## l2) ++ CONS (&0) (t ** l2)))`;; | |
let poly_exp = new_recursive_definition num_RECURSION | |
`(p exp 0 = [&1]) /\ | |
(p exp (SUC n) = p ** p exp n)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Differentiation of polynomials (needs an auxiliary function). *) | |
(* ------------------------------------------------------------------------- *) | |
let poly_diff_aux = new_recursive_definition list_RECURSION | |
`(poly_diff_aux n [] = []) /\ | |
(poly_diff_aux n (CONS h t) = CONS (&n * h) (poly_diff_aux (SUC n) t))`;; | |
let poly_diff = new_definition | |
`diff l = (if l = [] then [] else (poly_diff_aux 1 (TL l)))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Lengths. *) | |
(* ------------------------------------------------------------------------- *) | |
let LENGTH_POLY_DIFF_AUX = prove | |
(`!l n. LENGTH(poly_diff_aux n l) = LENGTH l`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LENGTH; poly_diff_aux]);; | |
let LENGTH_POLY_DIFF = prove | |
(`!l. LENGTH(poly_diff l) = PRE(LENGTH l)`, | |
LIST_INDUCT_TAC THEN | |
SIMP_TAC[poly_diff; LENGTH; LENGTH_POLY_DIFF_AUX; NOT_CONS_NIL; TL; PRE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful clausifications. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD_CLAUSES = prove | |
(`([] ++ p2 = p2) /\ | |
(p1 ++ [] = p1) /\ | |
((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`, | |
REWRITE_TAC[poly_add; NOT_CONS_NIL; HD; TL] THEN | |
SPEC_TAC(`p1:real list`,`p1:real list`) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly_add]);; | |
let POLY_CMUL_CLAUSES = prove | |
(`(c ## [] = []) /\ | |
(c ## (CONS h t) = CONS (c * h) (c ## t))`, | |
REWRITE_TAC[poly_cmul]);; | |
let POLY_NEG_CLAUSES = prove | |
(`(neg [] = []) /\ | |
(neg (CONS h t) = CONS (--h) (neg t))`, | |
REWRITE_TAC[poly_neg; POLY_CMUL_CLAUSES; REAL_MUL_LNEG; REAL_MUL_LID]);; | |
let POLY_MUL_CLAUSES = prove | |
(`([] ** p2 = []) /\ | |
([h1] ** p2 = h1 ## p2) /\ | |
((CONS h1 (CONS k1 t1)) ** p2 = h1 ## p2 ++ CONS (&0) (CONS k1 t1 ** p2))`, | |
REWRITE_TAC[poly_mul; NOT_CONS_NIL]);; | |
let POLY_DIFF_CLAUSES = prove | |
(`(diff [] = []) /\ | |
(diff [c] = []) /\ | |
(diff (CONS h t) = poly_diff_aux 1 t)`, | |
REWRITE_TAC[poly_diff; NOT_CONS_NIL; HD; TL; poly_diff_aux]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Various natural consequences of syntactic definitions. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD = prove | |
(`!p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_add; poly; REAL_ADD_LID] THEN | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[NOT_CONS_NIL; HD; TL; poly; REAL_ADD_RID] THEN | |
REAL_ARITH_TAC);; | |
let POLY_CMUL = prove | |
(`!p c x. poly (c ## p) x = c * poly p x`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; poly_cmul] THEN | |
REAL_ARITH_TAC);; | |
let POLY_NEG = prove | |
(`!p x. poly (neg p) x = --(poly p x)`, | |
REWRITE_TAC[poly_neg; POLY_CMUL] THEN | |
REAL_ARITH_TAC);; | |
let POLY_MUL = prove | |
(`!x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_mul; poly; REAL_MUL_LZERO; POLY_CMUL; POLY_ADD] THEN | |
SPEC_TAC(`h:real`,`h:real`) THEN | |
SPEC_TAC(`t:real list`,`t:real list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_mul; POLY_CMUL; POLY_ADD; poly; POLY_CMUL; | |
REAL_MUL_RZERO; REAL_ADD_RID; NOT_CONS_NIL] THEN | |
ASM_REWRITE_TAC[POLY_ADD; POLY_CMUL; poly] THEN | |
REAL_ARITH_TAC);; | |
let POLY_EXP = prove | |
(`!p n x. poly (p exp n) x = (poly p x) pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_exp; real_pow; POLY_MUL] THEN | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* The derivative is a bit more complicated. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFF_LEMMA = prove | |
(`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl | |
((x pow n) * poly (poly_diff_aux (SUC n) l) x))(x)`, | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly; poly_diff_aux; REAL_MUL_RZERO; DIFF_CONST] THEN | |
MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN | |
REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN | |
ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN | |
POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN | |
SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl | |
((x pow n) * &(SUC n) * h))(x)` | |
(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL | |
[REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
MP_TAC(SPEC `\x. x pow (SUC n)` DIFF_CMUL) THEN BETA_TAC THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
MP_TAC(SPEC `SUC n` DIFF_POW) THEN REWRITE_TAC[SUC_SUB1] THEN | |
DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]); | |
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN | |
REWRITE_TAC[REAL_MUL_ASSOC]]);; | |
let POLY_DIFF = prove | |
(`!l x. ((\x. poly l x) diffl (poly (diff l) x))(x)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_DIFF_CLAUSES] THEN | |
ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN | |
REWRITE_TAC[poly; DIFF_CONST] THEN | |
MAP_EVERY X_GEN_TAC [`x:real`] THEN | |
MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] POLY_DIFF_LEMMA) THEN | |
REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN | |
REWRITE_TAC[POW_1] THEN | |
DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] DIFF_CONST)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN | |
REWRITE_TAC[REAL_ADD_LID]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Trivial consequences. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFFERENTIABLE = prove | |
(`!l x. (\x. poly l x) differentiable x`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[differentiable] THEN | |
EXISTS_TAC `poly (diff l) x` THEN | |
REWRITE_TAC[POLY_DIFF]);; | |
let POLY_CONT = prove | |
(`!l x. (\x. poly l x) contl x`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC DIFF_CONT THEN | |
EXISTS_TAC `poly (diff l) x` THEN | |
MATCH_ACCEPT_TAC POLY_DIFF);; | |
let POLY_IVT_POS = prove | |
(`!p a b. a < b /\ poly p a < &0 /\ poly p b > &0 | |
==> ?x. a < x /\ x < b /\ (poly p x = &0)`, | |
REWRITE_TAC[real_gt] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`\x. poly p x`; `a:real`; `b:real`; `&0`] IVT) THEN | |
REWRITE_TAC[POLY_CONT] THEN | |
EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_LT_IMP_LE th]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN | |
CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN | |
FIRST_ASSUM SUBST_ALL_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[REAL_LT_REFL]) THEN | |
FIRST_ASSUM CONTR_TAC);; | |
let POLY_IVT_NEG = prove | |
(`!p a b. a < b /\ poly p a > &0 /\ poly p b < &0 | |
==> ?x. a < x /\ x < b /\ (poly p x = &0)`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `poly_neg p` POLY_IVT_POS) THEN | |
REWRITE_TAC[POLY_NEG; | |
REAL_ARITH `(--x < &0 <=> x > &0) /\ (--x > &0 <=> x < &0)`] THEN | |
DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN | |
ASM_REWRITE_TAC[REAL_ARITH `(--x = &0) <=> (x = &0)`]);; | |
let POLY_MVT = prove | |
(`!p a b. a < b ==> | |
?x. a < x /\ x < b /\ | |
(poly p b - poly p a = (b - a) * poly (diff p) x)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`poly p`; `a:real`; `b:real`] MVT) THEN | |
ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_CONT); | |
CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFFERENTIABLE)] THEN | |
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC DIFF_UNIQ THEN | |
EXISTS_TAC `poly p` THEN EXISTS_TAC `x:real` THEN | |
ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL POLY_DIFF)]);; | |
let POLY_MVT_ADD = prove | |
(`!p a x. ?y. abs(y) <= abs(x) /\ | |
(poly p (a + x) = poly p a + x * poly (diff p) (a + y))`, | |
REPEAT GEN_TAC THEN | |
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THENL | |
[EXISTS_TAC `&0` THEN | |
ASM_REWRITE_TAC[REAL_LE_REFL; REAL_ADD_RID; REAL_MUL_LZERO]; | |
MP_TAC(SPECL [`p:real list`; `a:real`; `a + x`] POLY_MVT) THEN | |
ASM_REWRITE_TAC[REAL_LT_ADDR] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN | |
REWRITE_TAC[REAL_ARITH `(x - y = ((a + b) - a) * z) <=> | |
(x = y + b * z)`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN | |
EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN | |
MAP_EVERY UNDISCH_TAC [`&0 < x`; `a < z`; `z < a + x`] THEN | |
REAL_ARITH_TAC; | |
MP_TAC(SPECL [`p:real list`; `a + x`; `a:real`] POLY_MVT) THEN | |
ASM_REWRITE_TAC[REAL_ARITH `a + x < a <=> &0 < --x`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN | |
REWRITE_TAC[REAL_ARITH `(x - y = (a - (a + b)) * z) <=> | |
(x = y + b * --z)`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN | |
EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN | |
MAP_EVERY UNDISCH_TAC [`&0 < --x`; `a + x < z`; `z < a`] THEN | |
REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD_RZERO = prove | |
(`!p. poly (p ++ []) = poly p`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; poly; REAL_ADD_RID]);; | |
let POLY_MUL_ASSOC = prove | |
(`!p q r. poly (p ** (q ** r)) = poly ((p ** q) ** r)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);; | |
let POLY_EXP_ADD = prove | |
(`!d n p. poly(p exp (n + d)) = poly(p exp n ** p exp d)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_MUL; ADD_CLAUSES; poly_exp; poly] THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas for derivatives. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFF_AUX_ADD = prove | |
(`!p1 p2 n. poly (poly_diff_aux n (p1 ++ p2)) = | |
poly (poly_diff_aux n p1 ++ poly_diff_aux n p2)`, | |
REPEAT(LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add]) THEN | |
ASM_REWRITE_TAC[poly_diff_aux; FUN_EQ_THM; poly; NOT_CONS_NIL; HD; TL] THEN | |
REAL_ARITH_TAC);; | |
let POLY_DIFF_AUX_CMUL = prove | |
(`!p c n. poly (poly_diff_aux n (c ## p)) = | |
poly (c ## poly_diff_aux n p)`, | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; poly; poly_diff_aux; poly_cmul; REAL_MUL_AC]);; | |
let POLY_DIFF_AUX_NEG = prove | |
(`!p n. poly (poly_diff_aux n (neg p)) = | |
poly (neg (poly_diff_aux n p))`, | |
REWRITE_TAC[poly_neg; POLY_DIFF_AUX_CMUL]);; | |
let POLY_DIFF_AUX_MUL_LEMMA = prove | |
(`!p n. poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p ++ p)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; poly_add; NOT_CONS_NIL] THEN | |
ASM_REWRITE_TAC[HD; TL; poly; FUN_EQ_THM] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB; REAL_MUL_LID]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Final results for derivatives. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFF_ADD = prove | |
(`!p1 p2. poly (diff (p1 ++ p2)) = | |
poly (diff p1 ++ diff p2)`, | |
REPEAT LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly_add; poly_diff; NOT_CONS_NIL; POLY_ADD_RZERO] THEN | |
ASM_REWRITE_TAC[HD; TL; POLY_DIFF_AUX_ADD]);; | |
let POLY_DIFF_CMUL = prove | |
(`!p c. poly (diff (c ## p)) = poly (c ## diff p)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; poly_cmul] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; TL; POLY_DIFF_AUX_CMUL]);; | |
let POLY_DIFF_NEG = prove | |
(`!p. poly (diff (neg p)) = poly (neg (diff p))`, | |
REWRITE_TAC[poly_neg; POLY_DIFF_CMUL]);; | |
let POLY_DIFF_MUL_LEMMA = prove | |
(`!t h. poly (diff (CONS h t)) = | |
poly (CONS (&0) (diff t) ++ t)`, | |
REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff_aux; NOT_CONS_NIL; HD; TL] THENL | |
[REWRITE_TAC[FUN_EQ_THM; poly; poly_add; REAL_MUL_RZERO; REAL_ADD_LID]; | |
REWRITE_TAC[FUN_EQ_THM; poly; POLY_DIFF_AUX_MUL_LEMMA; POLY_ADD] THEN | |
REAL_ARITH_TAC]);; | |
let POLY_DIFF_MUL = prove | |
(`!p1 p2. poly (diff (p1 ** p2)) = | |
poly (p1 ** diff p2 ++ diff p1 ** p2)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_mul] THENL | |
[REWRITE_TAC[poly_diff; poly_add; poly_mul]; ALL_TAC] THEN | |
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[POLY_DIFF_CLAUSES] THEN | |
REWRITE_TAC[poly_add; poly_mul; POLY_ADD_RZERO; POLY_DIFF_CMUL]; | |
ALL_TAC] THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_ADD] THEN | |
REWRITE_TAC[poly; POLY_ADD; POLY_DIFF_MUL_LEMMA; POLY_MUL] THEN | |
ASM_REWRITE_TAC[POLY_DIFF_CMUL; POLY_ADD; POLY_MUL] THEN | |
REAL_ARITH_TAC);; | |
let POLY_DIFF_EXP = prove | |
(`!p n. poly (diff (p exp (SUC n))) = | |
poly ((&(SUC n) ## (p exp n)) ** diff p)`, | |
GEN_TAC THEN INDUCT_TAC THEN ONCE_REWRITE_TAC[poly_exp] THENL | |
[REWRITE_TAC[poly_exp; POLY_DIFF_MUL] THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD; POLY_CMUL] THEN | |
REWRITE_TAC[poly; POLY_DIFF_CLAUSES; ADD1; ADD_CLAUSES] THEN | |
REAL_ARITH_TAC; | |
REWRITE_TAC[POLY_DIFF_MUL] THEN | |
ASM_REWRITE_TAC[POLY_MUL; POLY_ADD; FUN_EQ_THM; POLY_CMUL] THEN | |
REWRITE_TAC[poly_exp; POLY_MUL] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
REAL_ARITH_TAC]);; | |
let POLY_DIFF_EXP_PRIME = prove | |
(`!n a. poly (diff ([--a; &1] exp (SUC n))) = | |
poly (&(SUC n) ## ([--a; &1] exp n))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_DIFF_EXP] THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN | |
REWRITE_TAC[poly_diff; poly_diff_aux; TL; NOT_CONS_NIL] THEN | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Key property that f(a) = 0 ==> (x - a) divides p(x). Very delicate! *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_LINEAR_REM = prove | |
(`!t h. ?q r. CONS h t = [r] ++ [--a; &1] ** q`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[] THENL | |
[GEN_TAC THEN EXISTS_TAC `[]:real list` THEN | |
EXISTS_TAC `h:real` THEN | |
REWRITE_TAC[poly_add; poly_mul; poly_cmul; NOT_CONS_NIL] THEN | |
REWRITE_TAC[HD; TL; REAL_ADD_RID]; | |
X_GEN_TAC `k:real` THEN POP_ASSUM(STRIP_ASSUME_TAC o SPEC `h:real`) THEN | |
EXISTS_TAC `CONS (r:real) q` THEN EXISTS_TAC `r * a + k` THEN | |
ASM_REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN | |
REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL | |
[REAL_ARITH_TAC; ALL_TAC] THEN | |
SPEC_TAC(`q:real list`,`q:real list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[POLY_ADD_CLAUSES; POLY_MUL_CLAUSES; poly_cmul] THEN | |
REWRITE_TAC[REAL_ADD_RID; REAL_MUL_LID] THEN | |
REWRITE_TAC[REAL_ADD_AC]]);; | |
let POLY_LINEAR_DIVIDES = prove | |
(`!a p. (poly p a = &0) <=> (p = []) \/ ?q. p = [--a; &1] ** q`, | |
GEN_TAC THEN LIST_INDUCT_TAC THENL | |
[REWRITE_TAC[poly]; ALL_TAC] THEN | |
EQ_TAC THEN STRIP_TAC THENL | |
[DISJ2_TAC THEN STRIP_ASSUME_TAC(SPEC_ALL POLY_LINEAR_REM) THEN | |
EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `r = &0` SUBST_ALL_TAC THENL | |
[UNDISCH_TAC `poly (CONS h t) a = &0` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[POLY_ADD; POLY_MUL] THEN | |
REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[poly_mul] THEN REWRITE_TAC[NOT_CONS_NIL] THEN | |
SPEC_TAC(`q:real list`,`q:real list`) THEN LIST_INDUCT_TAC THENL | |
[REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID]; | |
REWRITE_TAC[poly_cmul; poly_add; NOT_CONS_NIL; HD; TL; REAL_ADD_LID]]]; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly]; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[poly] THEN | |
REWRITE_TAC[POLY_MUL] THEN REWRITE_TAC[poly] THEN | |
REWRITE_TAC[poly; REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN | |
REWRITE_TAC[REAL_ARITH `--a + a = &0`] THEN REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Thanks to the finesse of the above, we can use length rather than degree. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_LENGTH_MUL = prove | |
(`!q. LENGTH([--a; &1] ** q) = SUC(LENGTH q)`, | |
let lemma = prove | |
(`!p h k a. LENGTH (k ## p ++ CONS h (a ## p)) = SUC(LENGTH p)`, | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_cmul; POLY_ADD_CLAUSES; LENGTH]) in | |
REWRITE_TAC[poly_mul; NOT_CONS_NIL; lemma]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Thus a nontrivial polynomial of degree n has no more than n roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ROOTS_INDEX_LEMMA = prove | |
(`!n. !p. ~(poly p = poly []) /\ (LENGTH p = n) | |
==> ?i. !x. (poly p (x) = &0) ==> ?m. m <= n /\ (x = i m)`, | |
INDUCT_TAC THENL | |
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = &0` THENL | |
[UNDISCH_TAC `?a. poly p a = &0` THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN | |
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN | |
UNDISCH_TAC `~(poly ([-- a; &1] ** q) = poly [])` THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[POLY_LENGTH_MUL; SUC_INJ] THEN | |
DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL | |
[ASM_REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO; FUN_EQ_THM]; | |
DISCH_THEN(K ALL_TAC)] THEN | |
DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `i:num->real`) THEN | |
EXISTS_TAC `\m. if m = SUC n then (a:real) else i m` THEN | |
REWRITE_TAC[POLY_MUL; LE; REAL_ENTIRE] THEN | |
X_GEN_TAC `x:real` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC; | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC]; | |
UNDISCH_TAC `~(?a. poly p a = &0)` THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);; | |
let POLY_ROOTS_INDEX_LENGTH = prove | |
(`!p. ~(poly p = poly []) | |
==> ?i. !x. (poly p(x) = &0) ==> ?n. n <= LENGTH p /\ (x = i n)`, | |
MESON_TAC[POLY_ROOTS_INDEX_LEMMA]);; | |
let POLY_ROOTS_FINITE_LEMMA = prove | |
(`!p. ~(poly p = poly []) | |
==> ?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`, | |
MESON_TAC[POLY_ROOTS_INDEX_LENGTH; LT_SUC_LE]);; | |
let FINITE_LEMMA = prove | |
(`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n)) | |
==> ?a. !x. P x ==> x < a`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL | |
[REWRITE_TAC[LT] THEN MESON_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `P:real->bool` THEN | |
POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->real) N)`) THEN | |
DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN | |
EXISTS_TAC `abs(a) + abs(i(N:num)) + &1` THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[LT] THEN | |
MP_TAC(REAL_ARITH `!x v. x < abs(v) + abs(x) + &1`) THEN | |
MP_TAC(REAL_ARITH `!u v x. x < v ==> x < abs(v) + abs(u) + &1`) THEN | |
MESON_TAC[]);; | |
let POLY_ROOTS_FINITE = prove | |
(`!p. ~(poly p = poly []) <=> | |
?N i. !x. (poly p(x) = &0) ==> ?n:num. n < N /\ (x = i n)`, | |
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE_LEMMA] THEN | |
REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM; poly] THEN | |
MP_TAC(GENL [`i:num->real`; `N:num`] | |
(SPECL [`i:num->real`; `N:num`; `\x. poly p x = &0`] FINITE_LEMMA)) THEN | |
REWRITE_TAC[] THEN MESON_TAC[REAL_LT_REFL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence get entirety and cancellation for polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ENTIRE_LEMMA = prove | |
(`!p q. ~(poly p = poly []) /\ ~(poly q = poly []) | |
==> ~(poly (p ** q) = poly [])`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->real`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->real`)) THEN | |
EXISTS_TAC `N1 + N2:num` THEN | |
EXISTS_TAC `\n:num. if n < N1 then i1(n):real else i2(n - N1)` THEN | |
X_GEN_TAC `x:real` THEN REWRITE_TAC[REAL_ENTIRE; POLY_MUL] THEN | |
DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL | |
[EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC; | |
EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[LT_ADD_LCANCEL] THEN | |
REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN | |
AP_TERM_TAC THEN ARITH_TAC]);; | |
let POLY_ENTIRE = prove | |
(`!p q. (poly (p ** q) = poly []) <=> | |
(poly p = poly []) \/ (poly q = poly [])`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[POLY_ENTIRE_LEMMA]; | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_MUL_LZERO; poly]]);; | |
let POLY_MUL_LCANCEL = prove | |
(`!p q r. (poly (p ** q) = poly (p ** r)) <=> | |
(poly p = poly []) \/ (poly q = poly r)`, | |
let lemma1 = prove | |
(`!p q. (poly (p ++ neg q) = poly []) <=> (poly p = poly q)`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; poly] THEN | |
REWRITE_TAC[REAL_ARITH `(p + --q = &0) <=> (p = q)`]) in | |
let lemma2 = prove | |
(`!p q r. poly (p ** q ++ neg(p ** r)) = poly (p ** (q ++ neg(r)))`, | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_NEG; POLY_MUL] THEN | |
REAL_ARITH_TAC) in | |
ONCE_REWRITE_TAC[GSYM lemma1] THEN | |
REWRITE_TAC[lemma2; POLY_ENTIRE] THEN | |
REWRITE_TAC[lemma1]);; | |
let POLY_EXP_EQ_0 = prove | |
(`!p n. (poly (p exp n) = poly []) <=> (poly p = poly []) /\ ~(n = 0)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
REWRITE_TAC[LEFT_AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[poly_exp; poly; REAL_MUL_RZERO; REAL_ADD_RID; | |
REAL_OF_NUM_EQ; ARITH; NOT_SUC] THEN | |
ASM_REWRITE_TAC[POLY_MUL; poly; REAL_ENTIRE] THEN | |
CONV_TAC TAUT);; | |
let POLY_PRIME_EQ_0 = prove | |
(`!a. ~(poly [a ; &1] = poly [])`, | |
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
DISCH_THEN(MP_TAC o SPEC `&1 - a`) THEN | |
REAL_ARITH_TAC);; | |
let POLY_EXP_PRIME_EQ_0 = prove | |
(`!a n. ~(poly ([a ; &1] exp n) = poly [])`, | |
MESON_TAC[POLY_EXP_EQ_0; POLY_PRIME_EQ_0]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Can also prove a more "constructive" notion of polynomial being trivial. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ZERO_LEMMA = prove | |
(`!h t. (poly (CONS h t) = poly []) ==> (h = &0) /\ (poly t = poly [])`, | |
let lemma = REWRITE_RULE[FUN_EQ_THM; poly] POLY_ROOTS_FINITE in | |
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN | |
ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[REAL_ADD_LID]; | |
DISCH_THEN(MP_TAC o SPEC `&0`) THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN | |
CONV_TAC CONTRAPOS_CONV THEN | |
DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->real`)) THEN | |
MP_TAC(SPECL [`i:num->real`; `N:num`; `\x. poly t x = &0`] FINITE_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN | |
DISCH_THEN(MP_TAC o SPEC `abs(a) + &1`) THEN | |
REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL | |
[REAL_ARITH_TAC; | |
DISCH_THEN(MP_TAC o MATCH_MP (ASSUME `!x. (poly t x = &0) ==> x < a`)) THEN | |
REAL_ARITH_TAC]);; | |
let POLY_ZERO = prove | |
(`!p. (poly p = poly []) <=> ALL (\c. c = &0) p`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o MATCH_MP POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[]; | |
POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful triviality. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFF_AUX_ISZERO = prove | |
(`!p n. ALL (\c. c = &0) (poly_diff_aux (SUC n) p) <=> | |
ALL (\c. c = &0) p`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC | |
[ALL; poly_diff_aux; REAL_ENTIRE; REAL_OF_NUM_EQ; NOT_SUC]);; | |
let POLY_DIFF_ISZERO = prove | |
(`!p. (poly (diff p) = poly []) ==> ?h. poly p = poly [h]`, | |
REWRITE_TAC[POLY_ZERO] THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[POLY_DIFF_CLAUSES; ALL] THENL | |
[EXISTS_TAC `&0` THEN REWRITE_TAC[FUN_EQ_THM; poly] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[num_CONV `1`; POLY_DIFF_AUX_ISZERO] THEN | |
REWRITE_TAC[GSYM POLY_ZERO] THEN DISCH_TAC THEN | |
EXISTS_TAC `h:real` THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM]]);; | |
let POLY_DIFF_ZERO = prove | |
(`!p. (poly p = poly []) ==> (poly (diff p) = poly [])`, | |
REWRITE_TAC[POLY_ZERO] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[poly_diff; NOT_CONS_NIL] THEN | |
REWRITE_TAC[ALL; TL] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SPEC_TAC(`1`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN | |
SPEC_TAC(`t:real list`,`t:real list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; poly_diff_aux] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; | |
let POLY_DIFF_WELLDEF = prove | |
(`!p q. (poly p = poly q) ==> (poly (diff p) = poly (diff q))`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `p ++ neg(q)` POLY_DIFF_ZERO) THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_DIFF_ADD; POLY_DIFF_NEG; POLY_ADD] THEN | |
ASM_REWRITE_TAC[POLY_NEG; poly; REAL_ARITH `a + --a = &0`] THEN | |
REWRITE_TAC[REAL_ARITH `(a + --b = &0) <=> (a = b)`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basics of divisibility. *) | |
(* ------------------------------------------------------------------------- *) | |
let divides = new_definition | |
`p1 divides p2 <=> ?q. poly p2 = poly (p1 ** q)`;; | |
let POLY_PRIMES = prove | |
(`!a p q. [a; &1] divides (p ** q) <=> | |
[a; &1] divides p \/ [a; &1] divides q`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides; POLY_MUL; FUN_EQ_THM; poly] THEN | |
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_RID; REAL_MUL_RID] THEN EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `r:real list` (MP_TAC o SPEC `--a`)) THEN | |
REWRITE_TAC[REAL_ENTIRE; GSYM real_sub; REAL_SUB_REFL; REAL_MUL_LZERO] THEN | |
DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN | |
(POP_ASSUM(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
REWRITE_TAC[REAL_NEG_NEG] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC | |
(X_CHOOSE_THEN `s:real list` SUBST_ALL_TAC)) THENL | |
[EXISTS_TAC `[]:real list` THEN REWRITE_TAC[poly; REAL_MUL_RZERO]; | |
EXISTS_TAC `s:real list` THEN GEN_TAC THEN | |
REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]); | |
DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:real list`)) THEN | |
ASM_REWRITE_TAC[] THENL | |
[EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN | |
GEN_TAC THEN REWRITE_TAC[POLY_MUL] THEN REAL_ARITH_TAC]);; | |
let POLY_DIVIDES_REFL = prove | |
(`!p. p divides p`, | |
GEN_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `[&1]` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC);; | |
let POLY_DIVIDES_TRANS = prove | |
(`!p q r. p divides q /\ q divides r ==> p divides r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN | |
EXISTS_TAC `t ** s` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; REAL_MUL_ASSOC]);; | |
let POLY_DIVIDES_EXP = prove | |
(`!p m n. m <= n ==> (p exp m) divides (p exp n)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN | |
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN | |
REWRITE_TAC[ADD_CLAUSES; POLY_DIVIDES_REFL] THEN | |
MATCH_MP_TAC POLY_DIVIDES_TRANS THEN | |
EXISTS_TAC `p exp (m + d)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `p:real list` THEN | |
REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL] THEN | |
REAL_ARITH_TAC);; | |
let POLY_EXP_DIVIDES = prove | |
(`!p q m n. (p exp n) divides q /\ m <= n ==> (p exp m) divides q`, | |
MESON_TAC[POLY_DIVIDES_TRANS; POLY_DIVIDES_EXP]);; | |
let POLY_DIVIDES_ADD = prove | |
(`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN | |
EXISTS_TAC `t ++ s` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL] THEN | |
REAL_ARITH_TAC);; | |
let POLY_DIVIDES_SUB = prove | |
(`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN | |
EXISTS_TAC `s ++ neg(t)` THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_ADD; POLY_MUL; POLY_NEG] THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
REWRITE_TAC[REAL_ADD_LDISTRIB; REAL_MUL_RNEG] THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let POLY_DIVIDES_SUB2 = prove | |
(`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC POLY_DIVIDES_SUB THEN | |
EXISTS_TAC `r:real list` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `p divides (q ++ r)` THEN | |
REWRITE_TAC[divides; POLY_ADD; FUN_EQ_THM; POLY_MUL] THEN | |
DISCH_THEN(X_CHOOSE_TAC `s:real list`) THEN | |
EXISTS_TAC `s:real list` THEN | |
X_GEN_TAC `x:real` THEN POP_ASSUM(MP_TAC o SPEC `x:real`) THEN | |
REAL_ARITH_TAC);; | |
let POLY_DIVIDES_ZERO = prove | |
(`!p q. (poly p = poly []) ==> q divides p`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN | |
EXISTS_TAC `[]:real list` THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]);; | |
(* ------------------------------------------------------------------------- *) | |
(* At last, we can consider the order of a root. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ORDER_EXISTS = prove | |
(`!a d. !p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n. ([--a; &1] exp n) divides p /\ | |
~(([--a; &1] exp (SUC n)) divides p)`, | |
GEN_TAC THEN | |
(STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION) | |
`(!p q. mulexp 0 p q = q) /\ | |
(!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN | |
SUBGOAL_THEN | |
`!d. !p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\ | |
~(poly q a = &0)` | |
MP_TAC THENL | |
[INDUCT_TAC THENL | |
[REWRITE_TAC[LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `p:real list` THEN | |
ASM_CASES_TAC `poly p a = &0` THENL | |
[STRIP_TAC THEN UNDISCH_TAC `poly p a = &0` THEN | |
DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN | |
UNDISCH_TAC | |
`!p. (LENGTH p = d) /\ ~(poly p = poly []) | |
==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\ | |
~(poly q a = &0)` THEN | |
DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[POLY_LENGTH_MUL; POLY_ENTIRE; | |
DE_MORGAN_THM; SUC_INJ]) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` | |
(X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:real list` THEN | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:real list` THEN | |
ASM_REWRITE_TAC[]]; | |
DISCH_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` | |
(X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[divides] THEN CONJ_TAC THENL | |
[EXISTS_TAC `s:real list` THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[poly_exp; FUN_EQ_THM; POLY_MUL; poly] THEN | |
REAL_ARITH_TAC; | |
DISCH_THEN(X_CHOOSE_THEN `r:real list` MP_TAC) THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[] THENL | |
[UNDISCH_TAC `~(poly s a = &0)` THEN CONV_TAC CONTRAPOS_CONV THEN | |
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[poly; poly_exp; POLY_MUL] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[poly_exp] THEN | |
REWRITE_TAC[GSYM POLY_MUL_ASSOC; POLY_MUL_LCANCEL] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `a + &1`) THEN | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC; | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);; | |
let POLY_ORDER = prove | |
(`!p a. ~(poly p = poly []) | |
==> ?!n. ([--a; &1] exp n) divides p /\ | |
~(([--a; &1] exp (SUC n)) divides p)`, | |
MESON_TAC[POLY_ORDER_EXISTS; POLY_EXP_DIVIDES; LE_SUC_LT; LT_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of order. *) | |
(* ------------------------------------------------------------------------- *) | |
let order = new_definition | |
`order a p = @n. ([--a; &1] exp n) divides p /\ | |
~(([--a; &1] exp (SUC n)) divides p)`;; | |
let ORDER = prove | |
(`!p a n. ([--a; &1] exp n) divides p /\ | |
~(([--a; &1] exp (SUC n)) divides p) <=> | |
(n = order a p) /\ | |
~(poly p = poly [])`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN | |
EQ_TAC THEN STRIP_TAC THENL | |
[SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL | |
[FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:real list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]; | |
ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[]]; | |
ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN | |
ASM_MESON_TAC[POLY_ORDER]);; | |
let ORDER_THM = prove | |
(`!p a. ~(poly p = poly []) | |
==> ([--a; &1] exp (order a p)) divides p /\ | |
~(([--a; &1] exp (SUC(order a p))) divides p)`, | |
MESON_TAC[ORDER]);; | |
let ORDER_UNIQUE = prove | |
(`!p a n. ~(poly p = poly []) /\ | |
([--a; &1] exp n) divides p /\ | |
~(([--a; &1] exp (SUC n)) divides p) | |
==> (n = order a p)`, | |
MESON_TAC[ORDER]);; | |
let ORDER_POLY = prove | |
(`!p q a. (poly p = poly q) ==> (order a p = order a q)`, | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[order; divides; FUN_EQ_THM; POLY_MUL]);; | |
let ORDER_ROOT = prove | |
(`!p a. (poly p a = &0) <=> (poly p = poly []) \/ ~(order a p = 0)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN | |
ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o REWRITE_RULE[POLY_LINEAR_DIVIDES]) THEN | |
ASM_CASES_TAC `p:real list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN | |
ASM_REWRITE_TAC[poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `q:real list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly] THEN REAL_ARITH_TAC; | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP ORDER_THM) THEN | |
UNDISCH_TAC `~(order a p = 0)` THEN | |
SPEC_TAC(`order a p`,`n:num`) THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[poly_exp; NOT_SUC] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:real list` SUBST1_TAC) THEN | |
REWRITE_TAC[POLY_MUL; poly] THEN REAL_ARITH_TAC]);; | |
let ORDER_DIVIDES = prove | |
(`!p a n. ([--a; &1] exp n) divides p <=> | |
(poly p = poly []) \/ n <= order a p`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN | |
ASM_REWRITE_TAC[] THENL | |
[ASM_REWRITE_TAC[divides] THEN EXISTS_TAC `[]:real list` THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; poly; REAL_MUL_RZERO]; | |
ASM_MESON_TAC[ORDER_THM; POLY_EXP_DIVIDES; NOT_LE; LE_SUC_LT]]);; | |
let ORDER_DECOMP = prove | |
(`!p a. ~(poly p = poly []) | |
==> ?q. (poly p = poly (([--a; &1] exp (order a p)) ** q)) /\ | |
~([--a; &1] divides q)`, | |
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_THM) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:real`) THEN | |
DISCH_THEN(X_CHOOSE_TAC `q:real list` o REWRITE_RULE[divides]) THEN | |
EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN | |
UNDISCH_TAC `~([-- a; &1] exp SUC (order a p) divides p)` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN | |
EXISTS_TAC `r:real list` THEN | |
ASM_REWRITE_TAC[POLY_MUL; FUN_EQ_THM; poly_exp] THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Important composition properties of orders. *) | |
(* ------------------------------------------------------------------------- *) | |
let ORDER_MUL = prove | |
(`!a p q. ~(poly (p ** q) = poly []) ==> | |
(order a (p ** q) = order a p + order a q)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\ | |
~(poly (p ** q) = poly [])` | |
MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
REWRITE_TAC[GSYM ORDER] THEN CONJ_TAC THENL | |
[MP_TAC(CONJUNCT1 (SPEC `a:real` | |
(MATCH_MP ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN | |
DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN | |
MP_TAC(CONJUNCT1 (SPEC `a:real` | |
(MATCH_MP ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN | |
DISCH_THEN(X_CHOOSE_TAC `s: real list` o REWRITE_RULE[divides]) THEN | |
REWRITE_TAC[divides; FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN | |
ASM_REWRITE_TAC[POLY_MUL; POLY_EXP_ADD] THEN REAL_ARITH_TAC; | |
X_CHOOSE_THEN `r: real list` STRIP_ASSUME_TAC | |
(SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly p = poly [])`))) THEN | |
X_CHOOSE_THEN `s: real list` STRIP_ASSUME_TAC | |
(SPEC `a:real` (MATCH_MP ORDER_DECOMP (ASSUME `~(poly q = poly [])`))) THEN | |
ASM_REWRITE_TAC[divides; FUN_EQ_THM; POLY_EXP_ADD; POLY_MUL; poly_exp] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:real list` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `[--a; &1] divides (r ** s)` MP_TAC THENL | |
[ALL_TAC; ASM_REWRITE_TAC[POLY_PRIMES]] THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `t:real list` THEN | |
SUBGOAL_THEN `poly ([-- a; &1] exp (order a p) ** r ** s) = | |
poly ([-- a; &1] exp (order a p) ** ([-- a; &1] ** t))` | |
MP_TAC THENL | |
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN | |
SUBGOAL_THEN `poly ([-- a; &1] exp (order a q) ** | |
[-- a; &1] exp (order a p) ** r ** s) = | |
poly ([-- a; &1] exp (order a q) ** | |
[-- a; &1] exp (order a p) ** | |
[-- a; &1] ** t)` | |
MP_TAC THENL | |
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN | |
REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN | |
REWRITE_TAC[REAL_MUL_AC]]);; | |
let ORDER_DIFF = prove | |
(`!p a. ~(poly (diff p) = poly []) /\ | |
~(order a p = 0) | |
==> (order a p = SUC (order a (diff p)))`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `~(poly p = poly [])` MP_TAC THENL | |
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o | |
SPEC `a:real` o MATCH_MP ORDER_DECOMP) THEN | |
SPEC_TAC(`order a p`,`n:num`) THEN | |
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_INJ] THEN | |
STRIP_TAC THEN MATCH_MP_TAC ORDER_UNIQUE THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `!r. r divides (diff p) <=> | |
r divides (diff ([-- a; &1] exp SUC n ** q))` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[GEN_TAC THEN REWRITE_TAC[divides] THEN | |
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP POLY_DIFF_WELLDEF th]); | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[divides; FUN_EQ_THM] THEN | |
EXISTS_TAC `[--a; &1] ** (diff q) ++ &(SUC n) ## q` THEN | |
REWRITE_TAC[POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME; | |
POLY_ADD; POLY_MUL; POLY_CMUL] THEN | |
REWRITE_TAC[poly_exp; POLY_MUL] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[FUN_EQ_THM; divides; POLY_DIFF_MUL; POLY_DIFF_EXP_PRIME; | |
POLY_ADD; POLY_MUL; POLY_CMUL] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:real list` ASSUME_TAC) THEN | |
UNDISCH_TAC `~([-- a; &1] divides q)` THEN | |
REWRITE_TAC[divides] THEN | |
EXISTS_TAC `inv(&(SUC n)) ## (r ++ neg(diff q))` THEN | |
SUBGOAL_THEN | |
`poly ([--a; &1] exp n ** q) = | |
poly ([--a; &1] exp n ** ([-- a; &1] ** (inv (&(SUC n)) ## | |
(r ++ neg (diff q)))))` | |
MP_TAC THENL | |
[ALL_TAC; MESON_TAC[POLY_MUL_LCANCEL; POLY_EXP_PRIME_EQ_0]] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:real` THEN | |
SUBGOAL_THEN | |
`!a b. (&(SUC n) * a = &(SUC n) * b) ==> (a = b)` | |
MATCH_MP_TAC THENL | |
[REWRITE_TAC[REAL_EQ_MUL_LCANCEL; REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN | |
REWRITE_TAC[POLY_MUL; POLY_CMUL] THEN | |
SUBGOAL_THEN `!a b c. &(SUC n) * a * b * inv(&(SUC n)) * c = | |
a * b * c` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN | |
AP_TERM_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC REAL_MUL_RINV THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; NOT_SUC]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `x:real`) THEN | |
REWRITE_TAC[poly_exp; POLY_MUL; POLY_ADD; POLY_NEG] THEN | |
REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_SQUAREFREE_DECOMP_ORDER = prove | |
(`!p q d e r s. | |
~(poly (diff p) = poly []) /\ | |
(poly p = poly (q ** d)) /\ | |
(poly (diff p) = poly (e ** d)) /\ | |
(poly d = poly (r ** p ++ s ** diff p)) | |
==> !a. order a q = (if order a p = 0 then 0 else 1)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `order a p = order a q + order a d` MP_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (q ** d)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC ORDER_POLY THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC ORDER_MUL THEN | |
FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN | |
ASM_MESON_TAC[POLY_DIFF_ZERO]]; ALL_TAC] THEN | |
ASM_CASES_TAC `order a p = 0` THEN ASM_REWRITE_TAC[] THENL | |
[ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `order a (diff p) = | |
order a e + order a d` MP_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `order a (e ** d)` THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[ORDER_POLY]; ASM_MESON_TAC[ORDER_MUL]]; ALL_TAC] THEN | |
SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL | |
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN | |
MP_TAC(SPECL [`p:real list`; `a:real`] ORDER_DIFF) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `PRE` th)) THEN | |
REWRITE_TAC[PRE] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
SUBGOAL_THEN `order a (diff p) <= order a d` MP_TAC THENL | |
[SUBGOAL_THEN `([--a; &1] exp (order a (diff p))) divides d` | |
MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[POLY_ENTIRE; ORDER_DIVIDES]] THEN | |
SUBGOAL_THEN | |
`([--a; &1] exp (order a (diff p))) divides p /\ | |
([--a; &1] exp (order a (diff p))) divides (diff p)` | |
MP_TAC THENL | |
[REWRITE_TAC[ORDER_DIVIDES; LE_REFL] THEN DISJ2_TAC THEN | |
REWRITE_TAC[ASSUME `order a (diff p) = PRE (order a p)`] THEN | |
ARITH_TAC; | |
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN | |
REWRITE_TAC[ASSUME `poly d = poly (r ** p ++ s ** diff p)`] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:real list` ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `g:real list` ASSUME_TAC) THEN | |
EXISTS_TAC `r ** g ++ s ** f` THEN ASM_REWRITE_TAC[] THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; POLY_MUL; POLY_ADD] THEN ARITH_TAC]; | |
ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Define being "squarefree" --- NB with respect to real roots only. *) | |
(* ------------------------------------------------------------------------- *) | |
let rsquarefree = new_definition | |
`rsquarefree p <=> ~(poly p = poly []) /\ | |
!a. (order a p = 0) \/ (order a p = 1)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Standard squarefree criterion and rephasing of squarefree decomposition. *) | |
(* ------------------------------------------------------------------------- *) | |
let RSQUAREFREE_ROOTS = prove | |
(`!p. rsquarefree p <=> !a. ~((poly p a = &0) /\ (poly (diff p) a = &0))`, | |
GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN | |
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP POLY_DIFF_ZERO) THEN | |
ASM_REWRITE_TAC[poly; NOT_FORALL_THM]; | |
ASM_CASES_TAC `poly(diff p) = poly []` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_ASSUM(X_CHOOSE_THEN `h:real` MP_TAC o | |
MATCH_MP POLY_DIFF_ISZERO) THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ORDER_POLY th]) THEN | |
UNDISCH_TAC `~(poly p = poly [])` THEN ASM_REWRITE_TAC[poly] THEN | |
REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `a:real` THEN DISJ1_TAC THEN | |
MP_TAC(SPECL [`[h:real]`; `a:real`] ORDER_ROOT) THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; poly; REAL_MUL_RZERO; REAL_ADD_RID]; | |
ASM_REWRITE_TAC[ORDER_ROOT; DE_MORGAN_THM; num_CONV `1`] THEN | |
ASM_MESON_TAC[ORDER_DIFF; SUC_INJ]]]);; | |
let RSQUAREFREE_DECOMP = prove | |
(`!p a. rsquarefree p /\ (poly p a = &0) | |
==> ?q. (poly p = poly ([--a; &1] ** q)) /\ | |
~(poly q a = &0)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ORDER_DECOMP) THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o SPEC `a:real`) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ORDER_ROOT]) THEN | |
FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:real`) THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[ARITH] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN | |
EXISTS_TAC `q:real list` THEN CONJ_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN GEN_TAC THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [num_CONV `1`] THEN | |
REWRITE_TAC[poly_exp; POLY_MUL] THEN | |
REWRITE_TAC[poly] THEN REAL_ARITH_TAC; | |
DISCH_TAC THEN UNDISCH_TAC `~([-- a; &1] divides q)` THEN | |
REWRITE_TAC[divides] THEN | |
UNDISCH_TAC `poly q a = &0` THEN | |
GEN_REWRITE_TAC LAND_CONV [POLY_LINEAR_DIVIDES] THEN | |
ASM_CASES_TAC `q:real list = []` THEN ASM_REWRITE_TAC[] THENL | |
[EXISTS_TAC `[] : real list` THEN REWRITE_TAC[FUN_EQ_THM] THEN | |
REWRITE_TAC[POLY_MUL; poly; REAL_MUL_RZERO]; | |
MESON_TAC[]]]);; | |
let POLY_SQUAREFREE_DECOMP = prove | |
(`!p q d e r s. | |
~(poly (diff p) = poly []) /\ | |
(poly p = poly (q ** d)) /\ | |
(poly (diff p) = poly (e ** d)) /\ | |
(poly d = poly (r ** p ++ s ** diff p)) | |
==> rsquarefree q /\ (!a. (poly q a = &0) <=> (poly p a = &0))`, | |
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN | |
ASSUME_TAC(MATCH_MP POLY_SQUAREFREE_DECOMP_ORDER th)) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL | |
[ASM_MESON_TAC[POLY_DIFF_ZERO]; ALL_TAC] THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN | |
UNDISCH_TAC `~(poly p = poly [])` THEN | |
DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(fun th -> ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN | |
UNDISCH_TAC `poly p = poly (q ** d)` THEN | |
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN | |
ASM_REWRITE_TAC[rsquarefree; ORDER_ROOT] THEN | |
CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Normalization of a polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let normalize = new_recursive_definition list_RECURSION | |
`(normalize [] = []) /\ | |
(normalize (CONS h t) = | |
if normalize t = [] then if h = &0 then [] else [h] | |
else CONS h (normalize t))`;; | |
let POLY_NORMALIZE = prove | |
(`!p. poly (normalize p) = poly p`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN | |
ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN | |
UNDISCH_TAC `poly (normalize t) = poly t` THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN | |
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The degree of a polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let degree = new_definition | |
`degree p = PRE(LENGTH(normalize p))`;; | |
let DEGREE_ZERO = prove | |
(`!p. (poly p = poly []) ==> (degree p = 0)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN | |
SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL | |
[POP_ASSUM MP_TAC THEN SPEC_TAC(`p:real list`,`p:real list`) THEN | |
REWRITE_TAC[POLY_ZERO] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; ALL] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[LENGTH; PRE]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Tidier versions of finiteness of roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ROOTS_FINITE_SET = prove | |
(`!p. ~(poly p = poly []) ==> FINITE { x | poly p x = &0}`, | |
GEN_TAC THEN REWRITE_TAC[POLY_ROOTS_FINITE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `i:num->real` ASSUME_TAC) THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{x:real | ?n:num. n < N /\ (x = i n)}` THEN | |
CONJ_TAC THENL | |
[SPEC_TAC(`N:num`,`N:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN | |
INDUCT_TAC THENL | |
[SUBGOAL_THEN `{x:real | ?n. n < 0 /\ (x = i n)} = {}` | |
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; | |
SUBGOAL_THEN `{x:real | ?n. n < SUC N /\ (x = i n)} = | |
(i N) INSERT {x:real | ?n. n < N /\ (x = i n)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; LT] THEN MESON_TAC[]; | |
MATCH_MP_TAC(CONJUNCT2 FINITE_RULES) THEN ASM_REWRITE_TAC[]]]; | |
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Crude bound for polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_MONO = prove | |
(`!x k p. abs(x) <= k ==> abs(poly p x) <= poly (MAP abs p) k`, | |
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN | |
DISCH_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[poly; REAL_LE_REFL; MAP; REAL_ABS_0] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `abs(h) + abs(x * poly t x)` THEN | |
REWRITE_TAC[REAL_ABS_TRIANGLE; REAL_LE_LADD] THEN | |
REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_ABS_POS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversions to perform operations if coefficients are rational constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_DIFF_CONV = | |
let aux_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_diff_aux] | |
and aux_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_diff_aux] | |
and diff_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_DIFF_CLAUSES)) | |
and diff_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_DIFF_CLAUSES)] in | |
let rec POLY_DIFF_AUX_CONV tm = | |
(aux_conv0 ORELSEC | |
(aux_conv1 THENC | |
LAND_CONV REAL_RAT_MUL_CONV THENC | |
RAND_CONV (LAND_CONV NUM_SUC_CONV THENC POLY_DIFF_AUX_CONV))) tm in | |
diff_conv0 ORELSEC | |
(diff_conv1 THENC POLY_DIFF_AUX_CONV);; | |
let POLY_CMUL_CONV = | |
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul] | |
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul] in | |
let rec POLY_CMUL_CONV tm = | |
(cmul_conv0 ORELSEC | |
(cmul_conv1 THENC | |
LAND_CONV REAL_RAT_MUL_CONV THENC | |
RAND_CONV POLY_CMUL_CONV)) tm in | |
POLY_CMUL_CONV;; | |
let POLY_ADD_CONV = | |
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES)) | |
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)] in | |
let rec POLY_ADD_CONV tm = | |
(add_conv0 ORELSEC | |
(add_conv1 THENC | |
LAND_CONV REAL_RAT_ADD_CONV THENC | |
RAND_CONV POLY_ADD_CONV)) tm in | |
POLY_ADD_CONV;; | |
let POLY_MUL_CONV = | |
let mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES] | |
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)] | |
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)] in | |
let rec POLY_MUL_CONV tm = | |
(mul_conv0 ORELSEC | |
(mul_conv1 THENC POLY_CMUL_CONV) ORELSEC | |
(mul_conv2 THENC | |
LAND_CONV POLY_CMUL_CONV THENC | |
RAND_CONV(RAND_CONV POLY_MUL_CONV) THENC | |
POLY_ADD_CONV)) tm in | |
POLY_MUL_CONV;; | |
let POLY_NORMALIZE_CONV = | |
let pth = prove | |
(`normalize (CONS h t) = | |
(\n. if n = [] then if h = &0 then [] else [h] else CONS h n) | |
(normalize t)`, | |
REWRITE_TAC[normalize]) in | |
let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize] | |
and norm_conv1 = GEN_REWRITE_CONV I [pth] | |
and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV | |
[COND_CLAUSES; NOT_CONS_NIL; EQT_INTRO(SPEC_ALL EQ_REFL)] in | |
let rec POLY_NORMALIZE_CONV tm = | |
(norm_conv0 ORELSEC | |
(norm_conv1 THENC | |
RAND_CONV POLY_NORMALIZE_CONV THENC | |
BETA_CONV THENC | |
RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV REAL_RAT_EQ_CONV))) THENC | |
norm_conv2)) tm in | |
POLY_NORMALIZE_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some theorems asserting that operations give non-nil results. *) | |
(* ------------------------------------------------------------------------- *) | |
let NOT_POLY_CMUL_NIL = prove | |
(`!h p. ~(p = []) ==> ~((h ## p) = [])`, | |
STRIP_TAC THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; SIMP_TAC[poly_cmul; NOT_CONS_NIL]]);; | |
let NOT_POLY_MUL_NIL = prove | |
(`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> ~((p1 ** p2) = [])`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
SIMP_TAC[poly_mul;NOT_CONS_NIL] THEN | |
SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_cmul;NOT_CONS_NIL]; | |
SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL]] | |
] | |
]);; | |
let NOT_POLY_EXP_NIL = prove | |
(`!n p . ~(p = []) ==> ~((poly_exp p n) = [])`, | |
let lem001 = ASSUME `!p . ~(p = []) ==> ~(poly_exp p n = [])` in | |
let lem002 = SIMP_RULE[NOT_CONS_NIL] (SPEC `CONS (h:real) t` lem001) in | |
INDUCT_TAC THENL | |
[SIMP_TAC[poly_exp;NOT_CONS_NIL]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
SIMP_TAC[lem002;NOT_POLY_MUL_NIL;poly_exp;NOT_CONS_NIL] | |
] | |
]);; | |
let NOT_POLY_EXP_X_NIL = prove | |
(`!n. ~((poly_exp [&0;&1] n) = [])`, | |
let lem01 = prove(`~([&0;&1] = [])`,SIMP_TAC[NOT_CONS_NIL]) in | |
INDUCT_TAC THENL | |
[SIMP_TAC[poly_exp;NOT_CONS_NIL]; | |
ASM_SIMP_TAC[poly_exp;NOT_POLY_MUL_NIL;lem01]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some general lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_CMUL_LID = prove | |
(`!p. &1 ## p = p`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_cmul]; | |
ASM_SIMP_TAC[poly_cmul] THEN SIMP_TAC[REAL_ARITH `&1 * h = h`]]);; | |
let POLY_MUL_LID = prove | |
(`!p. [&1] ** p = p`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_mul;poly_cmul]; | |
ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[POLY_CMUL_LID]]);; | |
let POLY_MUL_RID = prove | |
(`!p. p ** [&1] = p`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_mul]; | |
ASM_CASES_TAC `t:(real)list = []` THEN | |
ASM_SIMP_TAC[poly_mul;poly_cmul;poly_add;NOT_CONS_NIL;HD;TL; | |
REAL_ARITH `h + (real_of_num 0) = h`;REAL_ARITH `h * (real_of_num 1) = h`] | |
]);; | |
let POLY_ADD_SYM = prove | |
(`!x y . x ++ y = y ++ x`, | |
let lem1 = ASSUME `!y . t ++ y = y ++ t` in | |
let lem2 = SPEC `t':(real)list` lem1 in | |
LIST_INDUCT_TAC THENL | |
[LIST_INDUCT_TAC THENL [SIMP_TAC[poly_add]; SIMP_TAC[poly_add]]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_add]; | |
SIMP_TAC[POLY_ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[lem2] THEN | |
SIMP_TAC[SPECL [`h:real`;`h':real`] REAL_ADD_SYM] | |
] | |
]);; | |
let POLY_ADD_ASSOC = prove | |
(`!x y z . x ++ (y ++ z) = (x ++ y) ++ z`, | |
let lem1 = ASSUME `!y z. t ++ y ++ z = (t ++ y) ++ z` in | |
let lem2 = SPECL [`t':(real)list`;`t'':(real)list`] lem1 in | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[POLY_ADD_CLAUSES]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[POLY_ADD_CLAUSES]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[POLY_ADD_CLAUSES]; | |
SIMP_TAC[POLY_ADD_CLAUSES] THEN | |
SIMP_TAC[REAL_ADD_ASSOC] THEN | |
SIMP_TAC[lem2] | |
] | |
] | |
]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Heads and tails resulting from operations. *) | |
(* ------------------------------------------------------------------------- *) | |
let TL_POLY_MUL_X = prove | |
(`!p. TL ([&0;&1] ** p) = p`, | |
LIST_INDUCT_TAC THENL | |
[ONCE_REWRITE_TAC[poly_mul] THEN | |
SIMP_TAC[NOT_CONS_NIL;poly_cmul;poly_add;TL;poly_mul]; | |
ONCE_REWRITE_TAC[poly_mul] THEN SIMP_TAC[NOT_CONS_NIL] THEN | |
ONCE_REWRITE_TAC[poly_cmul] THEN ONCE_REWRITE_TAC[poly_add] THEN | |
SIMP_TAC[NOT_CONS_NIL] THEN SIMP_TAC[TL;POLY_MUL_LID] THEN | |
SPEC_TAC (`h:real`,`h:real`) THEN | |
SPEC_TAC (`t:(real)list`,`t:(real)list`) THEN | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_cmul;poly_add]; | |
ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD;TL; | |
REAL_ARITH `(&0) * h + h' = h'`] | |
] | |
]);; | |
let HD_POLY_MUL_X = prove | |
(`!p. HD ([&0;&1] ** p) = &0`, | |
LIST_INDUCT_TAC THEN | |
SIMP_TAC[poly_mul;NOT_CONS_NIL;poly_cmul;poly_add;HD; | |
REAL_ARITH `&0 * h + &0 = &0`]);; | |
let TL_POLY_EXP_X_SUC = prove | |
(`!n . TL (poly_exp [&0;&1] (SUC n)) = poly_exp [&0;&1] n`, | |
SIMP_TAC[poly_exp;TL_POLY_MUL_X]);; | |
let HD_POLY_EXP_X_SUC = prove | |
(`!n . HD (poly_exp [&0;&1] (SUC n)) = &0`, | |
INDUCT_TAC THENL | |
[SIMP_TAC[poly_exp;poly_add;HD;TL;poly_cmul;poly_mul;NOT_CONS_NIL; | |
REAL_ARITH `&0 * &1 + &0 = &0`]; | |
SIMP_TAC[poly_exp;HD_POLY_MUL_X]]);; | |
let HD_POLY_ADD = prove | |
(`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ++ p2) = (HD p1) + (HD p2)`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
SIMP_TAC[NOT_CONS_NIL;poly_add] THEN | |
ONCE_REWRITE_TAC[ISPECL [`h':real`;`t':(real)list`] NOT_CONS_NIL] THEN | |
SIMP_TAC[HD] | |
] | |
]);; | |
let HD_POLY_CMUL = prove | |
(`!x p . ~(p = []) ==> HD (x ## p) = x * (HD p)`, | |
STRIP_TAC THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;HD]]);; | |
let TL_POLY_CMUL = prove | |
(`!x p . ~(p = []) ==> TL (x ## p) = x ## (TL p)`, | |
STRIP_TAC THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; SIMP_TAC[NOT_CONS_NIL;poly_cmul;TL]]);; | |
let HD_POLY_MUL = prove | |
(`!p1 p2 . ~(p1 = []) /\ ~(p2 = []) ==> HD (p1 ** p2) = (HD p1) * (HD p2)`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
SIMP_TAC[NOT_CONS_NIL;poly_mul] THEN | |
ASM_CASES_TAC `(t:(real)list) = []` THENL | |
[ASM_SIMP_TAC[poly_cmul;HD]; | |
ASM_SIMP_TAC[poly_cmul;poly_add;NOT_CONS_NIL;HD] THEN REAL_ARITH_TAC | |
] | |
] | |
]);; | |
let HD_POLY_EXP = prove | |
(`!n p . ~(p = []) ==> HD (poly_exp p n) = (HD p) pow n`, | |
INDUCT_TAC THENL | |
[SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; SIMP_TAC[HD;pow]]; | |
SIMP_TAC[poly_exp] THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[]; | |
SIMP_TAC[HD;GSYM pow;NOT_CONS_NIL;poly_mul] THEN | |
ASM_CASES_TAC `(t:(real)list) = []` THENL | |
[ASM_SIMP_TAC[HD_POLY_CMUL;NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL; | |
NOT_CONS_NIL;HD;GSYM pow]; | |
ASM_SIMP_TAC[NOT_POLY_CMUL_NIL;NOT_POLY_EXP_NIL;NOT_CONS_NIL; | |
HD_POLY_ADD;HD;HD_POLY_CMUL;GSYM pow] THEN | |
REAL_ARITH_TAC] | |
] | |
]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Additional general lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_ADD_IDENT = prove | |
(`neutral (++) = []`, | |
let l1 = ASSUME `!x. (!y. x ++ y = y /\ y ++ x = y) | |
==> (!y. (CONS h t) ++ y = y /\ y ++ (CONS h t) = y)` in | |
let l2 = SPEC `[]:(real)list` l1 in | |
let l3 = SIMP_RULE[POLY_ADD_CLAUSES] l2 in | |
let l4 = SPEC `[]:(real)list` l3 in | |
let l5 = CONJUNCT1 l4 in | |
let l6 = SIMP_RULE[POLY_ADD_CLAUSES;NOT_CONS_NIL] l5 in | |
let l7 = NOT_INTRO (DISCH_ALL l6) in | |
ONCE_REWRITE_TAC[neutral] THEN SELECT_ELIM_TAC THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[];SIMP_TAC[l7]]);; | |
let POLY_ADD_NEUTRAL = prove | |
(`!x. neutral (++) ++ x = x`, | |
SIMP_TAC[POLY_ADD_IDENT;POLY_ADD_CLAUSES]);; | |
let MONOIDAL_POLY_ADD = prove | |
(`monoidal poly_add`, | |
let lem1 = CONJ POLY_ADD_SYM (CONJ POLY_ADD_ASSOC POLY_ADD_NEUTRAL) in | |
ONCE_REWRITE_TAC[monoidal] THEN ACCEPT_TAC lem1);; | |
let POLY_DIFF_AUX_ADD_LEMMA = prove | |
(`!t1 t2 n. poly_diff_aux n (t1 ++ t2) = | |
(poly_diff_aux n t1) ++ (poly_diff_aux n t2)`, | |
let lem = REAL_ARITH `!n h h'. (&n * h) + (&n * h') = &n * (h + h')` in | |
LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN | |
LIST_INDUCT_TAC THEN SIMP_TAC[POLY_ADD_CLAUSES;poly_diff_aux] THEN | |
STRIP_TAC THEN | |
ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[poly_diff_aux] THEN | |
ONCE_REWRITE_TAC[POLY_ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[lem] THEN | |
ASM_SIMP_TAC[]);; | |
let POLYDIFF_ADD = prove | |
(`!p1 p2. (poly_diff (p1 ++ p2)) = (poly_diff p1 ++ poly_diff p2)`, | |
let lem1 = prove | |
(`!h0 t0 h1 t1. ~(((CONS h0 t0) ++ (CONS h1 t1)) = [])`, | |
SIMP_TAC[POLY_ADD_CLAUSES;NOT_CONS_NIL]) in | |
let lem2 = prove | |
(`!h0 t0 h1 t1. | |
(TL ((CONS h0 t0) ++ (CONS h1 t1)) | |
= (TL (CONS h0 t0)) ++ (TL (CONS h1 t1)))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[poly_add] THEN | |
ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN REWRITE_TAC[TL] | |
THEN SIMP_TAC[]) in | |
REPEAT LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_add;poly_diff]; | |
SIMP_TAC[poly_add;poly_diff]; | |
SIMP_TAC[poly_add;poly_diff;POLY_ADD_CLAUSES]; | |
SIMP_TAC[poly_diff] THEN | |
ONCE_REWRITE_TAC[lem1;NOT_CONS_NIL] THEN | |
SIMP_TAC[lem2;POLY_DIFF_AUX_ADD_LEMMA] | |
]);; | |
let POLY_DIFF_AUX_POLY_CMUL = prove | |
(`!p c n. poly_diff_aux n (c ## p) = c ## (poly_diff_aux n p)`, | |
let lem01 = ASSUME | |
`!c n. poly_diff_aux n (c ## t) = c ## poly_diff_aux n t` in | |
let lem02 = SPECL [`c:real`;`SUC n`] lem01 in | |
LIST_INDUCT_TAC THEN STRIP_TAC THEN STRIP_TAC THEN | |
SIMP_TAC[poly_cmul;poly_diff_aux;lem02; | |
REAL_ARITH `(a:real) * b * c = b * a * c`]);; | |
let POLY_CMUL_POLY_DIFF = prove | |
(`!p c. poly_diff (c ## p) = c ## (poly_diff p)`, | |
LIST_INDUCT_TAC THEN | |
SIMP_TAC[poly_diff;POLY_DIFF_AUX_POLY_CMUL;TL_POLY_CMUL; | |
poly_cmul;NOT_CONS_NIL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Theorems about the lengths of lists from the polynomial operations. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_CMUL_LENGTH = prove | |
(`!c p. LENGTH (c ## p) = LENGTH p`, | |
STRIP_TAC THEN LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_cmul]; | |
SIMP_TAC[poly_cmul] THEN ASM_SIMP_TAC[LENGTH] | |
]);; | |
let POLY_ADD_LENGTH = prove | |
(`!p q. LENGTH (p ++ q) = MAX (LENGTH p) (LENGTH q)`, | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC; | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[poly_add;LENGTH] THEN ARITH_TAC; | |
SIMP_TAC[poly_add;LENGTH] THEN | |
ONCE_REWRITE_TAC[NOT_CONS_NIL] THEN SIMP_TAC[HD;TL;LENGTH] THEN | |
ASM_SIMP_TAC[] THEN | |
ONCE_REWRITE_TAC[ARITH_RULE `MAX x y = if (x > y) then x else y`] THEN | |
ASM_CASES_TAC `LENGTH (t:(real)list) > LENGTH (t':(real)list)` THENL | |
[ASM_SIMP_TAC[ARITH_RULE `x > y ==> (SUC x) > (SUC y)`]; | |
ASM_SIMP_TAC[ARITH_RULE `~(x > y) ==> ~((SUC x) > (SUC y))`]] | |
] | |
]);; | |
let POLY_MUL_LENGTH = prove | |
(`!p h t. LENGTH (p ** (CONS h t)) >= LENGTH p`, | |
let lemma01 = ASSUME `!h t'. LENGTH (t ** CONS h t') >= LENGTH t` in | |
let lemma02 = SPECL [`h':real`;`t':(real)list`] lemma01 in | |
let lemma03 = ONCE_REWRITE_RULE[ARITH_RULE `(x:num) >= y <=> SUC x >= SUC y`] | |
lemma02 in | |
let lemma05 = ARITH_RULE `(y:num) >= z ==> (x + (y - x) >= z) ` in | |
let lemma06 = SPECL [`SUC (LENGTH (t ** (CONS (h':real) t')))`; | |
`LENGTH (h ## (CONS h' t'))`; | |
`SUC (LENGTH (t:(real)list))`] (GEN_ALL lemma05) in | |
let lemma07 = MATCH_MP (lemma06) (lemma03) in | |
LIST_INDUCT_TAC THENL | |
[SIMP_TAC[POLY_MUL_CLAUSES] THEN ARITH_TAC; | |
SIMP_TAC[poly_mul] THEN ASM_CASES_TAC `(t:(real)list) = []` THENL | |
[ASM_SIMP_TAC[POLY_CMUL_LENGTH;LENGTH] THEN ARITH_TAC; | |
ASM_SIMP_TAC[POLY_ADD_LENGTH;LENGTH;lemma07; | |
ARITH_RULE `!x y. (MAX x y) = x + (y - x)`] | |
] | |
]);; | |
let POLY_EXP_X_REC = prove | |
(`!n. poly_exp [&0;&1] (SUC n) = CONS (&0) (poly_exp [&0;&1] n)`, | |
let lem01 = MATCH_MP CONS_HD_TL (SPEC `(SUC n)` NOT_POLY_EXP_X_NIL) in | |
let lem02 = ONCE_REWRITE_RULE[HD_POLY_EXP_X_SUC; TL_POLY_EXP_X_SUC] lem01 in | |
ACCEPT_TAC (GEN_ALL lem02));; | |
let POLY_MUL_LENGTH2 = prove | |
(`!q p. ~(q = []) ==> LENGTH (p ** q) >= LENGTH p`, | |
LIST_INDUCT_TAC THEN SIMP_TAC[NOT_CONS_NIL; POLY_MUL_LENGTH]);; | |
let POLY_EXP_X_LENGTH = prove | |
(`!n. LENGTH (poly_exp [&0;&1] n) = SUC n`, | |
INDUCT_TAC THEN | |
ASM_SIMP_TAC[poly_exp;LENGTH; POLY_EXP_X_REC; | |
ARITH_RULE `(SUC x) = (SUC y) <=> x = y`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Expansion of a polynomial as a power sum. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLY_SUM_EQUIV = prove | |
(`!p x. | |
~(p = []) ==> | |
poly p x = sum (0..(PRE (LENGTH p))) (\i. (EL i p)*(x pow i))`, | |
let lem000 = ARITH_RULE `0 <= 0 + 1 /\ 0 <= (LENGTH (t:(real)list))` in | |
let lem001 = SPECL | |
[`f:num->real`;`0`;`0`;`LENGTH (t:(real)list)`] | |
SUM_COMBINE_R in | |
let lem002 = MP lem001 lem000 in | |
let lem003 = SPECL | |
[`f:num->real`;`1`;`LENGTH (t:(real)list)`] | |
SUM_OFFSET_0 in | |
let lem004 = ASSUME `~((t:(real)list) = [])` in | |
let lem005 = ONCE_REWRITE_RULE[GSYM LENGTH_EQ_NIL] lem004 in | |
let lem006 = ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (1 <= x)`] lem005 in | |
let lem007 = MP lem003 lem006 in | |
let lem017 = ARITH_RULE `1 <= (LENGTH (t:(real)list)) | |
==> ((LENGTH t) - 1 = PRE (LENGTH t))` in | |
let lem018 = MP lem017 lem006 in | |
LIST_INDUCT_TAC THENL | |
[ SIMP_TAC[NOT_CONS_NIL] | |
; | |
ASM_CASES_TAC `(t:(real)list) = []` THENL | |
[ | |
ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE] | |
THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`] | |
THEN ONCE_REWRITE_TAC[SUM_SING] | |
THEN BETA_TAC | |
THEN ONCE_REWRITE_TAC[EL] | |
THEN ONCE_REWRITE_TAC[HD] | |
THEN REAL_ARITH_TAC | |
; | |
ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE] | |
THEN ONCE_REWRITE_TAC[poly] | |
THEN ONCE_REWRITE_TAC[GSYM lem002] | |
THEN ONCE_REWRITE_TAC[ARITH_RULE `0 + 1 = 1`] | |
THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`] | |
THEN ONCE_REWRITE_TAC[SUM_SING] | |
THEN BETA_TAC | |
THEN SIMP_TAC[EL;HD] | |
THEN ONCE_REWRITE_TAC[lem007] | |
THEN BETA_TAC | |
THEN ONCE_REWRITE_TAC[GSYM ADD1] | |
THEN SIMP_TAC[EL;TL] | |
THEN ONCE_REWRITE_TAC[real_pow] | |
THEN ONCE_REWRITE_TAC[REAL_MUL_RID] | |
THEN ONCE_REWRITE_TAC[REAL_ARITH `(A:real) * B * C = B * (A * C)`] | |
THEN ONCE_REWRITE_TAC[NSUM_LMUL] | |
THEN ONCE_REWRITE_TAC[SUM_LMUL] | |
THEN ASM_SIMP_TAC[] | |
THEN SIMP_TAC[NOT_CONS_NIL] | |
THEN ONCE_REWRITE_TAC[lem018] | |
THEN SIMP_TAC[] | |
]]);; | |
let ITERATE_RADD_POLYADD = prove | |
(`!n x f. iterate (+) (0..n) (\i.poly (f i) x) = | |
poly (iterate (++) (0..n) f) x`, | |
INDUCT_TAC THEN | |
ASM_SIMP_TAC[ITERATE_CLAUSES_NUMSEG; MONOIDAL_REAL_ADD; MONOIDAL_POLY_ADD; | |
LE_0; POLY_ADD]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now we're finished with polynomials... *) | |
(* ------------------------------------------------------------------------- *) | |
do_list reduce_interface | |
["divides",`poly_divides:real list->real list->bool`; | |
"exp",`poly_exp:real list -> num -> real list`; | |
"diff",`poly_diff:real list->real list`];; | |
unparse_as_infix "exp";; | |