Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Iterated application of a function, ITER n f x = f^n(x). *) | |
(* *) | |
(* (c) Marco Maggesi, Graziano Gentili and Gianni Ciolli, 2008. *) | |
(* ========================================================================= *) | |
let ITER = define | |
`(!f. ITER 0 f x = x) /\ | |
(!f n. ITER (SUC n) f x = f (ITER n f x))`;; | |
let ITER_POINTLESS = prove | |
(`(!f. ITER 0 f = I) /\ | |
(!f n. ITER (SUC n) f = f o ITER n f)`, | |
REWRITE_TAC [FUN_EQ_THM; I_THM; o_THM; ITER]);; | |
let ITER_ALT = prove | |
(`(!f x. ITER 0 f x = x) /\ | |
(!f n x. ITER (SUC n) f x = ITER n f (f x))`, | |
REWRITE_TAC [ITER] THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC [ITER]);; | |
let ITER_ALT_POINTLESS = prove | |
(`(!f. ITER 0 f = I) /\ | |
(!f n. ITER (SUC n) f = ITER n f o f)`, | |
REWRITE_TAC [FUN_EQ_THM; I_THM; o_THM; ITER_ALT]);; | |
let ITER_1 = prove | |
(`!f x. ITER 1 f x = f x`, | |
REWRITE_TAC[num_CONV `1`; ITER]);; | |
let ITER_ADD = prove | |
(`!f n m x. ITER n f (ITER m f x) = ITER (n + m) f x`, | |
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; ADD]);; | |
let ITER_ADD_POINTLESS = prove | |
(`!m n. ITER (m + n) f = ITER m f o ITER n f`, | |
REWRITE_TAC[FUN_EQ_THM; o_THM; ITER_ADD]);; | |
let ITER_MUL = prove | |
(`!f n m x. ITER n (ITER m f) x = ITER (n * m) f x`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[ITER; MULT; ITER_ADD; ADD_AC]);; | |
let ITER_FIXPOINT = prove | |
(`!f n x. f x = x ==> ITER n f x = x`, | |
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC [ITER_ALT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Existence of "order" or "characteristic" in a general setting. *) | |
(* ------------------------------------------------------------------------- *) | |
let ORDER_EXISTENCE_GEN = prove | |
(`!P f:num->A. | |
P(f 0) /\ (!m n. P(f m) /\ ~(m = 0) ==> (P(f(m + n)) <=> P(f n))) | |
==> ?d. !n. P(f n) <=> d divides n`, | |
REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `!n. ~(n = 0) ==> ~P(f n:A)` THENL | |
[EXISTS_TAC `0` THEN REWRITE_TAC[NUMBER_RULE `0 divides n <=> n = 0`] THEN | |
ASM_MESON_TAC[]; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM])] THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `d:num` THEN REWRITE_TAC[NOT_IMP] THEN | |
REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN STRIP_TAC THEN | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[ASM_MESON_TAC[NUMBER_RULE `n divides 0`]; ALL_TAC] THEN | |
ASM_CASES_TAC `d <= n:num` THENL | |
[ALL_TAC; ASM_MESON_TAC[NOT_LT; DIVIDES_LE]] THEN | |
SUBGOAL_THEN `n:num = (n - d) + d` SUBST1_TAC THENL | |
[ASM_ARITH_TAC; ABBREV_TAC `m:num = n - d`] THEN | |
REWRITE_TAC[NUMBER_RULE `(d:num) divides m + d <=> d divides m`] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ASM_MESON_TAC[ADD_SYM]]);; | |
let ORDER_EXISTENCE_ITER = prove | |
(`!R f z:A. | |
R z z /\ | |
(!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z) /\ | |
(!x y. R x y ==> R (f x) (f y)) | |
==> ?d. !n. R (ITER n f z) z <=> d divides n`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`\x. (R:A->A->bool) x z`; | |
`\n. ITER n f (z:A)`] ORDER_EXISTENCE_GEN) THEN | |
ASM_REWRITE_TAC[ITER] THEN DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ITER_ADD] THEN | |
MP_TAC(MESON[] | |
`!a b:num->A. (!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z) /\ | |
(!n. R (a n) (b n)) | |
==> (!n. R (a n) z <=> R (b n) z)`) THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[ITER] THEN | |
ASM_MESON_TAC[]);; | |
let ORDER_EXISTENCE_CARD = prove | |
(`!R f z:A k. | |
FINITE { R(ITER n f z) | n IN (:num)} /\ | |
CARD { R(ITER n f z) | n IN (:num)} <= k /\ | |
R z z /\ | |
(!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z) /\ | |
(!x y. R (f x) (f y) <=> R x y) | |
==> ?d. 0 < d /\ d <= k /\ !n. R (ITER n f z) z <=> d divides n`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?m. 0 < m /\ m <= k /\ (R:A->A->bool) (ITER m f z) z` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`\n. (R:A->A->bool) (ITER n f z)`; `0..k`] | |
CARD_IMAGE_EQ_INJ) THEN | |
REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG; SUB_0] THEN | |
MATCH_MP_TAC(TAUT `~p /\ (~q ==> r) ==> (p <=> q) ==> r`) THEN | |
CONJ_TAC THENL | |
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE | |
`c <= k ==> s <= c ==> ~(s = k + 1)`)) THEN | |
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; | |
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN | |
MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN | |
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN | |
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN | |
EXISTS_TAC `q - p:num` THEN | |
REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
SUBGOAL_THEN | |
`!d. d <= p | |
==> (R:A->A->bool) (ITER (p - d) f z) (ITER (q - d) f z)` | |
MP_TAC THENL | |
[INDUCT_TAC THEN ASM_REWRITE_TAC[SUB_0] THENL | |
[SPEC_TAC(`q:num`,`q:num`) THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[ITER]; | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `q - d = SUC(q - SUC d) /\ p - d = SUC(p - SUC d)` | |
(fun th -> REWRITE_TAC[th]) THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_REWRITE_TAC[ITER]]; | |
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN | |
REWRITE_TAC[LE_REFL; SUB_REFL; ITER] THEN ASM_MESON_TAC[]]]; | |
MP_TAC(ISPECL [`R:A->A->bool`; `f:A->A`; `z:A`] ORDER_EXISTENCE_ITER) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN ASM_SIMP_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `m:num`) THEN | |
ASM_SIMP_TAC[LE_1; NUMBER_RULE `!n. 0 divides n <=> n = 0`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC]);; | |
let ORDER_EXISTENCE_FINITE = prove | |
(`!R f z:A. | |
FINITE { R(ITER n f z) | n IN (:num)} /\ | |
R z z /\ | |
(!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z) /\ | |
(!x y. R (f x) (f y) <=> R x y) | |
==> ?d. 0 < d /\ !n. R (ITER n f z) z <=> d divides n`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`R:A->A->bool`; `f:A->A`; `z:A`; | |
`CARD {(R:A->A->bool)(ITER n f z) | n IN (:num)}`] | |
ORDER_EXISTENCE_CARD) THEN ASM_REWRITE_TAC[LE_REFL] THEN MESON_TAC[]);; | |