Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
65.7 kB
(* ------------------------------------------------------------------ *)
(* Author and Copyright: Thomas C. Hales *)
(* License: GPL http://www.gnu.org/copyleft/gpl.html *)
(* Project: FLYSPECK http://www.math.pitt.edu/~thales/flyspeck/ *)
(* ------------------------------------------------------------------ *)
prioritize_real();;
let add_test,test = new_test_suite();;
let twopow =
new_definition(
`twopow x = if (?n. (x = (int_of_num n)))
then ((&2) pow (nabs x))
else inv((&2) pow (nabs x))`);;
let float =
new_definition(
`float x n = (real_of_int x)*(twopow n)`);;
let interval =
new_definition(
`interval x f eps = ((abs (x-f)) <= eps)`);;
(*--------------------------------------------------------------------*)
let mk_interval a b ex =
mk_comb(mk_comb (mk_comb (`interval`,a),b),ex);;
add_test("mk_interval",
mk_interval `#3` `#4` `#1` = `interval #3 #4 #1`);;
let dest_interval intv =
let (h1,ex) = dest_comb intv in
let (h2,f) = dest_comb h1 in
let (h3,a) = dest_comb h2 in
let _ = assert(h3 = `interval`) in
(a,f,ex);;
add_test("dest_interval",
let a = `#3` and b = `#4` and c = `#1` in
dest_interval (mk_interval a b c) = (a,b,c));;
(*--------------------------------------------------------------------*)
let (dest_int:term-> Num.num) =
fun b ->
let dest_pos_int a =
let (op,nat) = dest_comb a in
if (fst (dest_const op) = "int_of_num") then (dest_numeral nat)
else fail() in
let (op',u) = (dest_comb b) in
try (if (fst (dest_const op') = "int_neg") then
minus_num (dest_pos_int u) else
dest_pos_int b) with
Failure _ -> failwith "dest_int ";;
let (mk_int:Num.num -> term) =
fun a ->
let sgn = Num.sign_num a in
let abv = Num.abs_num a in
let r = mk_comb(` &: `,mk_numeral abv) in
try (if (sgn<0) then mk_comb (` --: `,r) else r) with
Failure _ -> failwith ("dest_int "^(string_of_num a));;
add_test("mk_int",
(mk_int (Int (-1443)) = `--: (&:1443)`) &&
(mk_int (Int 37) = `(&:37)`));;
(* ------------------------------------------------------------------ *)
let (split_ratio:Num.num -> Num.num*Num.num) =
function
(Ratio r) -> (Big_int (Ratio.numerator_ratio r)),
(Big_int (Ratio.denominator_ratio r))|
u -> (u,(Int 1));;
add_test("split_ratio",
let (a,b) = split_ratio ((Int 4)//(Int 20)) in
(a =/ (Int 1)) && (b =/ (Int 5)));;
(* ------------------------------------------------------------------ *)
(* break nonzero int r into a*(C**b) with a prime to C . *)
let (factor_C:int -> Num.num -> Num.num*Num.num) =
function c ->
let intC = (Int c) in
let rec divC (a,b) =
if ((Int 0) =/ mod_num a intC) then (divC (a//intC,b+/(Int 1)))
else (a,b) in
function r->
if ((Num.is_integer_num r)&& not((Num.sign_num r) = 0)) then
divC (r,(Int 0)) else failwith "factor_C";;
add_test("factor_C",
(factor_C 2 (Int (4096+32)) = (Int 129,Int 5)) &&
(factor_C 10 (Int (5000)) = (Int 5,Int 3)) &&
(cannot (factor_C 2) ((Int 50)//(Int 3))));;
(*--------------------------------------------------------------------*)
let (dest_float:term -> Num.num) =
fun f ->
let (a,b) = dest_binop `float` f in
(dest_int a)*/ ((Int 2) **/ (dest_int b));;
add_test("dest_float",
dest_float `float (&:3) (&:17)` = (Int 393216));;
add_test("dest_float2", (* must express as numeral first *)
cannot dest_float `float ((&:3)+:(&:1)) (&:17)`);;
(* ------------------------------------------------------------------ *)
(* creates float of the form `float a b` with a odd *)
let (mk_float:Num.num -> term) =
function r ->
let (a,b) = split_ratio r in
let (a',exp_a) = if (a=/(Int 0)) then ((Int 0),(Int 0)) else factor_C 2 a in
let (b',exp_b) = factor_C 2 b in
let c = a'//b' in
if (Num.is_integer_num c) then
mk_binop `float` (mk_int c) (mk_int (exp_a -/ exp_b))
else failwith "mk_float";;
add_test("mk_float",
mk_float (Int (4096+32)) = `float (&:129) (&:5)` &&
(mk_float (Int 0) = `float (&:0) (&:0)`));;
add_test("mk_float2", (* throws exception exactly when denom != 2^k *)
let rtest = fun t -> (t =/ dest_float (mk_float t)) in
rtest ((Int 3)//(Int 1024)) &&
(cannot rtest ((Int 1)//(Int 3))));;
add_test("mk_float dest_float", (* constructs canonical form of float *)
mk_float (dest_float `float (&:4) (&:3)`) = `float (&:1) (&:5)`);;
(* ------------------------------------------------------------------ *)
(* creates decimal of the form `DECIMAL a b` with a prime to 10 *)
let (mk_pos_decimal:Num.num -> term) =
function r ->
let _ = assert (r >=/ (Int 0)) in
let (a,b) = split_ratio r in
if (a=/(Int 0)) then `#0` else
let (a1,exp_a5) = factor_C 5 a in
let (a2,exp_a2) = factor_C 2 a1 in
let (b1,exp_b5) = factor_C 5 b in
let (b2,exp_b2) = factor_C 2 b1 in
let _ = assert(b2 =/ (Int 1)) in
let c = end_itlist Num.max_num [exp_b5-/exp_a5;exp_b2-/exp_a2;(Int 0)] in
let a' = a2*/((Int 2)**/ (c +/ exp_a2 -/ exp_b2))*/
((Int 5)**/(c +/ exp_a5 -/ exp_b5)) in
let b' = (Int 10) **/ c in
mk_binop `DECIMAL` (mk_numeral a') (mk_numeral b');;
add_test("mk_pos_decimal",
mk_pos_decimal (Int (5000)) = `#5000` &&
(mk_pos_decimal ((Int 30)//(Int 40)) = `#0.75`) &&
(mk_pos_decimal (Int 0) = `#0`) &&
(mk_pos_decimal ((Int 15)//(Int 25)) = `#0.6`) &&
(mk_pos_decimal ((Int 25)//(Int 4)) = `#6.25`) &&
(mk_pos_decimal ((Int 2)//(Int 25)) = `#0.08`));;
let (mk_decimal:Num.num->term) =
function r ->
let a = Num.sign_num r in
let b = mk_pos_decimal (Num.abs_num r) in
if (a < 0) then (mk_comb (`--.`, b)) else b;;
add_test("mk_decimal",
(mk_decimal (Int 3) = `#3`) &&
(mk_decimal (Int (-3)) = `--. (#3)`));;
(*--------------------------------------------------------------------*)
let (dest_decimal:term -> Num.num) =
fun f ->
let (a,b) = dest_binop `DECIMAL` f in
let a1 = dest_numeral a in
let b1 = dest_numeral b in
a1//b1;;
add_test("dest_decimal",
dest_decimal `#3.4` =/ ((Int 34)//(Int 10)));;
add_test("dest_decimal2",
cannot dest_decimal `--. (#3.4)`);;
(*--------------------------------------------------------------------*)
(* Properties of integer powers of 2. *)
(* ------------------------------------------------------------------ *)
let TWOPOW_POS = prove(`!n. (twopow (int_of_num n) = (&2) pow n)`,
(REWRITE_TAC[twopow])
THEN GEN_TAC
THEN COND_CASES_TAC
THENL [AP_TERM_TAC;ALL_TAC]
THEN (REWRITE_TAC[NABS_POS])
THEN (UNDISCH_EL_TAC 0)
THEN (TAUT_TAC (` ( A ) ==> (~ A ==> B)`))
THEN (MESON_TAC[]));;
let TWOPOW_NEG = prove(`!n. (twopow (--(int_of_num n)) = inv((&2) pow n))`,
GEN_TAC
THEN (REWRITE_TAC[twopow])
THEN (COND_CASES_TAC THENL [ALL_TAC;REWRITE_TAC[NABS_NEG]])
THEN (POP_ASSUM CHOOSE_TAC)
THEN (REWRITE_TAC[NABS_NEG])
THEN (UNDISCH_EL_TAC 0)
THEN (REWRITE_TAC[int_eq;int_neg_th;INT_NUM_REAL])
THEN (REWRITE_TAC[prove (`! u y.((--(real_of_num u) = (real_of_num y))=
((real_of_num u) +(real_of_num y) = (&0)))`,REAL_ARITH_TAC)])
THEN (REWRITE_TAC[REAL_OF_NUM_ADD;REAL_OF_NUM_EQ;ADD_EQ_0])
THEN (DISCH_TAC)
THEN (ASM_REWRITE_TAC[real_pow;REAL_INV_1]));;
let TWOPOW_INV = prove(`!a. (twopow (--: a) = (inv (twopow a)))`,
(GEN_TAC)
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP2)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((POP_ASSUM DISJ_CASES_TAC))
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG;REAL_INV_INV;INT_NEG_NEG])));;
let INT_REP3 = prove(`!a .(?n.( (a = &: n) \/ (a = --: (&: (n+1)))))`,
(GEN_TAC)
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP2)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((DISJ_CASES_TAC (prove (`((a:int) = (&: 0)) \/ ~((a:int) =(&: 0))`, MESON_TAC[]))))
(* cases *)
THENL[ ((EXISTS_TAC `0`)) THEN ((ASM_REWRITE_TAC[]));ALL_TAC]
THEN ((UNDISCH_EL_TAC 0))
THEN ((POP_ASSUM DISJ_CASES_TAC))
THENL [DISCH_TAC THEN ((ASM MESON_TAC)[]);ALL_TAC]
THEN (DISCH_TAC)
THEN ((EXISTS_TAC `PRE n`))
THEN ((DISJ2_TAC))
THEN ((ASM_REWRITE_TAC[INT_EQ_NEG2]))
(*** Changed by JRH, 2006/03/28 to avoid PRE_ELIM_TAC ***)
THEN (FIRST_X_ASSUM(MP_TAC o check(is_neg o concl)))
THEN (ASM_REWRITE_TAC[INT_NEG_EQ_0; INT_OF_NUM_EQ])
THEN (ARITH_TAC));;
let REAL_EQ_INV = prove(`!x y. ((x:real = y) <=> (inv(x) = inv (y)))`,
((REPEAT GEN_TAC))
THEN (EQ_TAC)
THENL [((DISCH_TAC THEN (ASM_REWRITE_TAC[])));
(* branch 2*) ((DISCH_TAC))
THEN ((ONCE_REWRITE_TAC [(GSYM REAL_INV_INV)]))
THEN ((ASM_REWRITE_TAC[]))]);;
let TWOPOW_ADD_1 =
prove(`!a. (twopow (a +: (&:1)) = twopow (a) *. (twopow (&:1)))`,
EVERY[
GEN_TAC;
CHOOSE_TAC (SPEC `a:int` INT_REP3);
POP_ASSUM DISJ_CASES_TAC
THENL[
ASM_REWRITE_TAC[TWOPOW_POS;INT_OF_NUM_ADD;REAL_POW_ADD];
EVERY[
ASM_REWRITE_TAC[GSYM INT_OF_NUM_ADD;INT_NEG_ADD;GSYM INT_ADD_ASSOC;INT_ADD_LINV;INT_ADD_RID];
REWRITE_TAC[GSYM INT_NEG_ADD;INT_OF_NUM_ADD;TWOPOW_NEG;TWOPOW_POS];
ONCE_REWRITE_TAC[SPEC `(&. 2) pow 1` (GSYM REAL_INV_INV)];
REWRITE_TAC[GSYM REAL_INV_MUL;GSYM REAL_EQ_INV;REAL_POW_ADD;GSYM REAL_MUL_ASSOC;REAL_POW_1];
REWRITE_TAC[MATCH_MP REAL_MUL_RINV (REAL_ARITH `~((&. 2) = (&. 0))`); REAL_MUL_RID]
]
]
]);;
let REAL_INV2 = prove(
`(inv(&. 2)*(&. 2) = (&.1)) /\ ((&. 2)*inv(&. 2) = (&.1))`,
SUBGOAL_TAC `~((&.2) = (&.0))`
THENL[
REAL_ARITH_TAC;
SIMP_TAC[REAL_MUL_RINV;REAL_MUL_LINV]]);;
let TWOPOW_0 = prove(`twopow (&: 0) = (&. 1)`,
(REWRITE_TAC[TWOPOW_POS;real_pow]));;
let TWOPOW_SUB_NUM = prove(`!m n.( twopow((&:m) - (&: n)) = twopow((&:m))*. twopow(--: (&:n)))`,
((INDUCT_TAC))
THENL [REWRITE_TAC[INT_SUB_LZERO;REAL_MUL_LID;TWOPOW_0];ALL_TAC]
THEN ((INDUCT_TAC THEN
( (ASM_REWRITE_TAC[INT_SUB_RZERO;TWOPOW_0;REAL_MUL_RID;INT_NEG_0;ADD1;GSYM INT_OF_NUM_ADD]))))
THEN ((ASM_REWRITE_TAC [TWOPOW_ADD_1;TWOPOW_INV;prove (`((&:m)+(&:1)) -: ((&:n) +: (&:1)) = ((&:m)-: (&:n))`,INT_ARITH_TAC)]))
THEN ((REWRITE_TAC[REAL_INV_MUL]))
THEN ((ABBREV_TAC `a:real = twopow (&: m)`))
THEN ((ABBREV_TAC `b:real = inv(twopow (&: n))`))
THEN ((REWRITE_TAC[TWOPOW_POS;REAL_POW_1;GSYM REAL_MUL_ASSOC;prove (`!(x:real). ((&.2)*x = x*(&.2))`,REAL_ARITH_TAC)]))
THEN ((REWRITE_TAC[REAL_INV2;REAL_MUL_RID])));;
let TWOPOW_ADD_NUM = prove(
`!m n. (twopow ((&:m) + (&:n)) = twopow((&:m))*. twopow((&:n)))`,
(REWRITE_TAC[TWOPOW_POS;REAL_POW_ADD;INT_OF_NUM_ADD]));;
let TWOPOW_ADD_INT = prove(
`!a b. (twopow (a +: b) = twopow(a) *. (twopow(b)))`,
((REPEAT GEN_TAC))
THEN ((ASSUME_TAC (SPEC `a:int` INT_REP)))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((POP_ASSUM CHOOSE_TAC))
THEN ((ASSUME_TAC (SPEC `b:int` INT_REP)))
THEN ((REPEAT (POP_ASSUM CHOOSE_TAC)))
THEN ((ASM_REWRITE_TAC[]))
THEN ((SUBGOAL_TAC `&: n -: &: m +: &: n' -: &: m' = (&: (n+n')) -: (&: (m+m'))`))
(* branch *)
THENL[ ((REWRITE_TAC[GSYM INT_OF_NUM_ADD]))
THEN ((INT_ARITH_TAC));ALL_TAC]
(* 2nd *)
THEN ((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[TWOPOW_SUB_NUM;TWOPOW_INV;TWOPOW_POS;REAL_POW_ADD;REAL_INV_MUL;GSYM REAL_MUL_ASSOC]))
THEN ((ABBREV_TAC `a':real = inv ((&. 2) pow m)`))
THEN ((ABBREV_TAC `c :real = (&. 2) pow n`))
THEN ((ABBREV_TAC `d :real = (&. 2) pow n'`))
THEN ((ABBREV_TAC `e :real = inv ((&. 2) pow m')`))
THEN (MESON_TAC[REAL_MUL_AC]));;
let TWOPOW_ABS = prove(`!a. ||. (twopow a) = (twopow a)`,
(GEN_TAC)
THEN ((CHOOSE_THEN DISJ_CASES_TAC (SPEC `a:int` INT_REP2)))
(* branch *)
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG;REAL_ABS_POW;REAL_ABS_NUM;REAL_ABS_INV])));;
let REAL_POW_POW = prove(
`!x m n . (x **. m) **. n = x **. (m *| n)`,
((GEN_TAC THEN GEN_TAC THEN INDUCT_TAC))
(* branch *)
THENL[ ((REWRITE_TAC[real_pow;MULT_0]));
(* second branch *)
((REWRITE_TAC[real_pow]))
THEN ((ASM_REWRITE_TAC[ADD1;LEFT_ADD_DISTRIB;REAL_POW_ADD;REAL_MUL_AC;MULT_CLAUSES]))]);;
let INT_POW_POW = INT_OF_REAL_THM REAL_POW_POW;;
let TWOPOW_POW = prove(
`!a n. (twopow a) pow n = twopow (a *: (&: n))`,
((REPEAT GEN_TAC))
THEN ((CHOOSE_THEN DISJ_CASES_TAC (SPEC `a:int` INT_REP2)))
(* branch *)
THEN ((ASM_REWRITE_TAC[TWOPOW_POS;INT_OF_NUM_MUL;
REAL_POW_POW;TWOPOW_NEG;REAL_POW_INV;INT_OF_NUM_MUL;GSYM INT_NEG_LMUL])));;
(* ------------------------------------------------------------------ *)
(* Arithmetic operations on float *)
(* ------------------------------------------------------------------ *)
let FLOAT_NEG = prove(`!a m. --. (float a m) = float (--: a) m`,
REPEAT GEN_TAC THEN
REWRITE_TAC[float;GSYM REAL_MUL_LNEG;int_neg_th]);;
let FLOAT_MUL = prove(`!a b m n. (float a m) *. (float b n) = (float (a *: b) (m +: n))`,
((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[float;GSYM REAL_MUL_ASSOC;TWOPOW_ADD_INT;int_mul_th]))
THEN ((MESON_TAC[REAL_MUL_AC])));;
let FLOAT_ADD = prove(
`!a b c m. (float a (m+: (&:c))) +. (float b m)
= (float ( (&:(2 EXP c))*a +: b) m)`,
((REWRITE_TAC[float;int_add_th;REAL_ADD_RDISTRIB;int_mul_th;TWOPOW_ADD_INT]))
THEN ((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[TWOPOW_POS;INT_NUM_REAL;GSYM REAL_OF_NUM_POW]))
THEN ((MESON_TAC[REAL_MUL_AC])));;
let FLOAT_ADD_EQ = prove(
`!a b m. (float a m) +. (float b m) =
(float (a+:b) m)`,
((REPEAT GEN_TAC))
THEN ((REWRITE_TAC[REWRITE_RULE[INT_ADD_RID] (SPEC `m:int` (SPEC `0` (SPEC `b:int` (SPEC `a:int` FLOAT_ADD))))]))
THEN ((REWRITE_TAC[EXP;INT_MUL_LID])));;
let FLOAT_ADD_NP = prove(
`!a b m n. (float b (--:(&: n))) +. (float a (&: m)) = (float a (&: m)) +. (float b (--:(&: n)))`,
(REWRITE_TAC[REAL_ADD_AC]));;
let FLOAT_ADD_PN = prove(
`!a b m n. (float a (&: m)) +. (float b (--(&: n))) = (float ( (&:(2 EXP (m+| n)))*a + b) (--:(&: n)))`,
((REPEAT GEN_TAC))
THEN ((SUBGOAL_TAC `&: m = (--:(&: n)) + (&:(m+n))`))
THENL[ ((REWRITE_TAC[GSYM INT_OF_NUM_ADD]))
THEN ((INT_ARITH_TAC));
(* branch *)
((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[FLOAT_ADD]))]);;
let FLOAT_ADD_PP = prove(
`!a b m n. ((n <=| m) ==>( (float a (&: m)) +. (float b (&: n)) = (float ((&:(2 EXP (m -| n))) *a + b) (&: n))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((SUBGOAL_TAC `&: m = (&: n) + (&: (m-n))`))
THENL[ ((REWRITE_TAC[INT_OF_NUM_ADD]))
THEN (AP_TERM_TAC)
THEN ((REWRITE_TAC[prove (`!(m:num) n. (n+m-n) = (m-n)+n`,REWRITE_TAC[ADD_AC])]))
THEN ((UNDISCH_EL_TAC 0))
THEN ((MATCH_ACCEPT_TAC(GSYM SUB_ADD)));
(* branch *)
((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[FLOAT_ADD]))]);;
let FLOAT_ADD_PPv2 = prove(
`!a b m n. ((m <| n) ==>( (float a (&: m)) +. (float b (&: n)) = (float ((&:(2 EXP (n -| m))) *b + a) (&: m))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((H_MATCH_MP (THM (prove(`!m n. m<|n ==> m <=|n`,MESON_TAC[LT_LE]))) (HYP_INT 0)))
THEN ((UNDISCH_EL_TAC 0))
THEN ((SIMP_TAC[GSYM FLOAT_ADD_PP]))
THEN (DISCH_TAC)
THEN ((REWRITE_TAC[REAL_ADD_AC])));;
let FLOAT_ADD_NN = prove(
`!a b m n. ((n <=| m) ==>( (float a (--:(&: m))) +. (float b (--:(&: n)))
= (float ((&:(2 EXP (m -| n))) *b + a) (--:(&: m)))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN ((SUBGOAL_TAC `--: (&: n) = --: (&: m) + (&: (m-n))`))
THENL [((UNDISCH_EL_TAC 0))
THEN ((SIMP_TAC [INT_OF_REAL_THM (GSYM REAL_OF_NUM_SUB)]))
THEN (DISCH_TAC)
THEN ((INT_ARITH_TAC));
(*branch*)
((DISCH_TAC))
THEN (ASM_REWRITE_TAC[GSYM FLOAT_ADD;REAL_ADD_AC])]);;
let FLOAT_ADD_NNv2 = prove(
`!a b m n. ((m <| n) ==>( (float a (--:(&: m))) +. (float b (--:(&: n)))
= (float ((&:(2 EXP (n -| m))) *a + b) (--:(&: n)))))`,
((REPEAT GEN_TAC))
THEN (DISCH_TAC)
THEN (((H_MATCH_MP (THM (prove(`!m n. m<|n ==> m <=|n`,MESON_TAC[LT_LE]))) (HYP_INT 0))))
THEN (((UNDISCH_EL_TAC 0)))
THEN (((SIMP_TAC[GSYM FLOAT_ADD_NN])))
THEN ((DISCH_TAC))
THEN (((REWRITE_TAC[REAL_ADD_AC]))));;
let FLOAT_SUB = prove(
`!a b n m. (float a n) -. (float b m)
= (float a n) +. (float (--: b) m)`,
REWRITE_TAC[float;int_neg_th;real_sub;REAL_NEG_LMUL]);;
let FLOAT_ABS = prove(
`!a n. ||. (float a n) = (float (||: a) n)`,
(REWRITE_TAC[float;int_abs_th;REAL_ABS_MUL;TWOPOW_ABS]));;
let FLOAT_POW = prove(
`!a n m. (float a n) **. m = (float (a **: m) (n *: (&:m)))`,
(REWRITE_TAC[float;REAL_POW_MUL;int_pow_th;TWOPOW_POW]));;
let INT_SUB = prove(
`!a b. (a -: b) = (a +: (--: b))`,
(REWRITE_TAC[GSYM INT_SUB_RNEG;INT_NEG_NEG]));;
let INT_ABS_NUM = prove(
`!n. ||: (&: n) = (&: n)`,
(REWRITE_TAC[int_eq;int_abs_th;INT_NUM_REAL;REAL_ABS_NUM]));;
let INT_ABS_NEG_NUM = prove(
`!n. ||: (--: (&: n)) = (&: n)`,
(REWRITE_TAC[int_eq;int_abs_th;int_neg_th;INT_NUM_REAL;REAL_ABS_NUM;REAL_ABS_NEG]));;
let INT_ADD_NEG_NUM = prove(`!x y. --: (&: x) +: (&: y) = (&: y) +: (--: (&: x))`,
(REWRITE_TAC[INT_ADD_AC]));;
let INT_POW_MUL = INT_OF_REAL_THM REAL_POW_MUL;;
let INT_POW_NEG1 = prove (
`!x n. (--: (&: x)) **: n = ((--: (&: 1)) **: n) *: ((&: x) **: n)`,
(REWRITE_TAC[GSYM INT_POW_MUL; GSYM INT_NEG_MINUS1]));;
let INT_POW_EVEN_NEG1 = prove(
`!x n. (--: (&: x)) **: (NUMERAL (BIT0 n)) = ((&: x) **: (NUMERAL (BIT0 n)))`,
((REPEAT GEN_TAC))
THEN ((ONCE_REWRITE_TAC[INT_POW_NEG1]))
THEN ((ABBREV_TAC `a = &: 1`))
THEN ((ABBREV_TAC `b = (&: x)**: (NUMERAL (BIT0 n))`))
THEN ((REWRITE_TAC[NUMERAL;BIT0]))
THEN ((REWRITE_TAC[GSYM MULT_2;GSYM INT_POW_POW;INT_OF_REAL_THM REAL_POW_2;INT_NEG_MUL2]))
THEN ((EXPAND_TAC "a"))
THEN ((REWRITE_TAC[INT_MUL_RID;INT_MUL_LID;INT_OF_REAL_THM REAL_POW_ONE])));;
let INT_POW_ODD_NEG1 = prove(
`!x n. (--: (&: x)) **: (NUMERAL (BIT1 n)) = --: ((&: x) **: (NUMERAL (BIT1 n)))`,
((REPEAT GEN_TAC))
THEN ((ONCE_REWRITE_TAC[INT_POW_NEG1]))
THEN (((ABBREV_TAC `a = &: 1`)))
THEN (((ABBREV_TAC `b = (&: x)**: (NUMERAL (BIT1 n))`)))
THEN ((REWRITE_TAC[NUMERAL;BIT1]))
THEN ((ONCE_REWRITE_TAC[ADD1]))
THEN ((EXPAND_TAC "a"))
THEN ((REWRITE_TAC[GSYM MULT_2]))
THEN ((REWRITE_TAC[INT_OF_REAL_THM POW_MINUS1;INT_OF_REAL_THM REAL_POW_ADD]))
THEN ((REWRITE_TAC[INT_OF_REAL_THM POW_1;INT_MUL_LID;INT_MUL_LNEG])));;
(* subtraction of integers *)
let INT_ADD_NEG = prove(
`!x y. (x < y ==> ((&: x) +: (--: (&: y)) = --: (&: (y - x))))`,
((REPEAT GEN_TAC))
THEN ((DISCH_TAC))
THEN ((SUBGOAL_TAC `&: (y-x ) = (&: y) - (&: x)`))
THENL [((SUBGOAL_TAC `x <=| y`))
(* branch *)
THENL [(((ASM MESON_TAC)[LE_LT]));((SIMP_TAC[GSYM (INT_OF_REAL_THM REAL_OF_NUM_SUB)]))]
(* branch *)
; ((DISCH_TAC))
THEN ((ASM_REWRITE_TAC[]))
THEN (ACCEPT_TAC(INT_ARITH `&: x +: --: (&: y) = --: (&: y -: &: x)`))]);;
let INT_ADD_NEGv2 = prove(
`!x y. (y <= x ==> ((&: x) +: (--: (&: y)) = (&: (x - y))))`,
((REPEAT GEN_TAC))
THEN ((DISCH_TAC))
THEN ((SUBGOAL_TAC `&: (x - y) = (&: x) - (&: y)`))
THENL[
((UNDISCH_EL_TAC 0)) THEN ((SIMP_TAC[GSYM (INT_OF_REAL_THM REAL_OF_NUM_SUB)]));
((DISCH_TAC)) THEN ((ASM_REWRITE_TAC[INT_SUB]))
]
);;
(* assumes a term of the form &:a +: (--: (&: b)) *)
let INT_SUB_CONV t =
let a,b = dest_binop `(+:)` t in
let (_,a) = dest_comb a in
let (_,b) = dest_comb b in
let (_,b) = dest_comb b in
let a = dest_numeral a in
let b = dest_numeral b in
let thm = if (b <=/ a) then
INT_ADD_NEGv2
else INT_ADD_NEG in
(ARITH_SIMP_CONV[thm]) t;; (* (SIMP_CONV[thm;ARITH]) t;; *)
(* ------------------------------------------------------------------ *)
(* Simplifies an arithmetic expression in floats *)
(* A workhorse *)
(* ------------------------------------------------------------------ *)
let FLOAT_CONV =
(ARITH_SIMP_CONV[FLOAT_MUL;FLOAT_SUB;FLOAT_ABS;FLOAT_POW;
FLOAT_ADD_NN;FLOAT_ADD_NNv2;FLOAT_ADD_PP;FLOAT_ADD_PPv2;
FLOAT_ADD_NP;FLOAT_ADD_PN;FLOAT_NEG;
INT_NEG_NEG;INT_SUB;
INT_ABS_NUM;INT_ABS_NEG_NUM;
INT_MUL_LNEG;INT_MUL_RNEG;INT_NEG_MUL2;INT_OF_NUM_MUL;
INT_OF_NUM_ADD;GSYM INT_NEG_ADD;INT_ADD_NEG_NUM;
INT_OF_NUM_POW;INT_POW_ODD_NEG1;INT_POW_EVEN_NEG1;
INT_ADD_NEG;INT_ADD_NEGv2 (* ; ARITH *)
]) ;;
add_test("FLOAT_CONV1",
let f z =
let (x,y) = dest_eq z in
let (u,v) = dest_thm (FLOAT_CONV x) in
(u=[]) && (z = v) in
f `float (&:3) (&:0) = float (&:3) (&:0)` &&
f `float (&:3) (&:3) = float (&:3) (&:3)` &&
f `float (&:3) (&:0) +. (float (&:4) (&:0)) = (float (&:7) (&:0))` &&
f `float (&:1 + (&:3)) (&:4) = float (&:4) (&:4)` &&
f `float (&:3 - (&:7)) (&:0) = float (--:(&:4)) (&:0)` &&
f `float (&:3) (&:4) *. (float (--: (&:2)) (&:3)) = float (--: (&:6))
(&:7)` &&
f `--. (float (--: (&:3)) (&:0)) = float (&:3) (&:0)`
);;
(* ------------------------------------------------------------------ *)
(* Operations on interval. Preliminary stuff to deal with *)
(* chains of inequalities. *)
(* ------------------------------------------------------------------ *)
let REAL_ADD_LE_SUBST_RHS = prove(
`!a b c P. ((a <=. ((P b)) /\ (!x. (P x) = x + (P (&. 0))) /\ (b <=. c)) ==> (a <=. (P c)))`,
(((REPEAT GEN_TAC)))
THEN (((REPEAT (TAUT_TAC `(b ==> a==> c) ==> (a /\ b ==> c)`))))
THEN (((REPEAT DISCH_TAC)))
THEN ((((H_RULER(ONCE_REWRITE_RULE))[HYP_INT 1] (HYP_INT 0))))
THEN ((((ASM ONCE_REWRITE_TAC)[])))
THEN ((((ASM MESON_TAC)[REAL_LE_RADD;REAL_LE_TRANS]))));;
let REAL_ADD_LE_SUBST_LHS = prove(
`!a b c P. (((P(a) <=. b /\ (!x. (P x) = x + (P (&. 0))) /\ (c <=. a)))
==> ((P c) <=. b))`,
(REP_GEN_TAC)
THEN (DISCH_ALL_TAC)
THEN (((H_RULER(ONCE_REWRITE_RULE)) [HYP_INT 1] (HYP_INT 0)))
THEN (((ASM ONCE_REWRITE_TAC)[]))
THEN (((ASM MESON_TAC)[REAL_LE_RADD;REAL_LE_TRANS])));;
(*
let rec SPECL =
function [] -> I |
(a::b) -> fun thm ->(SPECL b (SPEC a thm));;
*)
(*
input:
rel: b <=. c
thm: a <=. P(b).
output: a <=. P(c).
condition: REAL_ARITH must be able to prove !x. P(x) = x+. P(&.0).
condition: the term `a` must appear exactly once the lhs of the thm.
*)
let IWRITE_REAL_LE_RHS rel thm =
let bvar = genvar `:real` in
let (bt,_) = dest_binop `(<=.)` (concl rel) in
let sub = SUBS_CONV[ASSUME (mk_eq(bt,bvar))] in
let rule = (fun th -> EQ_MP (sub (concl th)) th) in
let (subrel,subthm) = (rule rel,rule thm) in
let (a,p) = dest_binop `(<=.)` (concl subthm) in
let (_,c) = dest_binop `(<=.)` (concl subrel) in
let pfn = mk_abs (bvar,p) in
let imp_th = BETA_RULE (SPECL [a;bvar;c;pfn] REAL_ADD_LE_SUBST_RHS) in
let ppart = REAL_ARITH
(fst(dest_conj(snd(dest_conj(fst(dest_imp(concl imp_th))))))) in
let prethm = MATCH_MP imp_th (CONJ subthm (CONJ ppart subrel)) in
let prethm2 = SPEC bt (GEN bvar (DISCH
(find (fun x -> try(bvar = rhs x) with failure -> false) (hyp prethm)) prethm)) in
MATCH_MP prethm2 (REFL bt);;
(*
input:
rel: c <=. a
thm: P a <=. b
output: P c <=. b
condition: REAL_ARITH must be able to prove !x. P(x) = x+. P(&.0).
condition: the term `a` must appear exactly once the lhs of the thm.
*)
let IWRITE_REAL_LE_LHS rel thm =
let avar = genvar `:real` in
let (_,at) = dest_binop `(<=.)` (concl rel) in
let sub = SUBS_CONV[ASSUME (mk_eq(at,avar))] in
let rule = (fun th -> EQ_MP (sub (concl th)) th) in
let (subrel,subthm) = (rule rel,rule thm) in
let (p,b) = dest_binop `(<=.)` (concl subthm) in
let (c,_) = dest_binop `(<=.)` (concl subrel) in
let pfn = mk_abs (avar,p) in
let imp_th = BETA_RULE (SPECL [avar;b;c;pfn] REAL_ADD_LE_SUBST_LHS) in
let ppart = REAL_ARITH
(fst(dest_conj(snd(dest_conj(fst(dest_imp(concl imp_th))))))) in
let prethm = MATCH_MP imp_th (CONJ subthm (CONJ ppart subrel)) in
let prethm2 = SPEC at (GEN avar (DISCH
(find (fun x -> try(avar = rhs x) with failure -> false) (hyp prethm)) prethm)) in
MATCH_MP prethm2 (REFL at);;
(* ------------------------------------------------------------------ *)
(* INTERVAL ADD, NEG, SUBTRACT *)
(* ------------------------------------------------------------------ *)
let INTERVAL_ADD = prove(
`!x f ex y g ey. interval x f ex /\ interval y g ey ==>
interval (x +. y) (f +. g) (ex +. ey)`,
EVERY[
REPEAT GEN_TAC;
TAUT_TAC `(A==>B==>C)==>(A/\ B ==> C)`;
REWRITE_TAC[interval];
REWRITE_TAC[prove(`(x+.y) -. (f+.g) = (x-.f) +. (y-.g)`,REAL_ARITH_TAC)];
ABBREV_TAC `a = x-.f`;
ABBREV_TAC `b = y-.g`;
ASSUME_TAC (SPEC `b:real` (SPEC `a:real` ABS_TRIANGLE));
UNDISCH_EL_TAC 0;
ABBREV_TAC `a':real = abs a`;
ABBREV_TAC `b':real = abs b`;
REPEAT DISCH_TAC;
(H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 2);
(H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 2) (HYP_INT 0);
ASM_REWRITE_TAC[]]);;
let INTERVAL_NEG = prove(
`!x f ex. interval x f ex = interval (--. x) (--. f) ex`,
(REWRITE_TAC[interval;REAL_ABS_NEG;REAL_ARITH `!x y. -- x -. (-- y) = --. (x -. y)`]));;
let INTERVAL_NEG2 = prove(
`!x f ex. interval (--. x) f ex = interval x (--. f) ex`,
(REWRITE_TAC[interval;REAL_ABS_NEG;REAL_ARITH `!x y. -- x -. y = --. (x -. (--. y))`]));;
let INTERVAL_SUB = prove(
`!x f ex y g ey. interval x f ex /\ interval y g ey ==> interval (x -. y) (f -. g) (ex +. ey)`,
((REWRITE_TAC[real_sub]))
THEN (DISCH_ALL_TAC)
THEN (((H_RULER (ONCE_REWRITE_RULE))[THM(INTERVAL_NEG)] (HYP_INT 1)))
THEN (((ASM MESON_TAC)[INTERVAL_ADD])));;
(* ------------------------------------------------------------------ *)
(* INTERVAL MULTIPLICATION *)
(* ------------------------------------------------------------------ *)
let REAL_PROP_LE_LABS = prove(
`!x y z. (y <=. z) ==> ((abs x)* y <=. (abs x) *z)`,(SIMP_TAC[REAL_LE_LMUL_IMP;ABS_POS]));;
(* renamed from REAL_LE_ABS_RMUL *)
let REAL_PROP_LE_RABS = prove(
`!x y z. (y <=. z) ==> ( y * (abs x) <=. z *(abs x))`,(SIMP_TAC[REAL_LE_RMUL_IMP;ABS_POS]));;
let REAL_LE_ABS_MUL = prove(
`!x y z w. (( x <=. y) /\ (abs z <=. w)) ==> (x*.w <=. y*.w) `,
(DISCH_ALL_TAC)
THEN ((ASSUME_TAC (REAL_ARITH `abs z <=. w ==> (&.0) <=. w`)))
THEN (((ASM MESON_TAC)[REAL_LE_RMUL_IMP])));;
let INTERVAL_MUL = prove(
`!x f ex y g ey. (interval x f ex) /\ (interval y g ey) ==>
(interval (x *. y) (f *. g) (abs(f)*.ey +. ex*. abs(g) +. ex*.ey))`,
(REP_GEN_TAC)
THEN ((REWRITE_TAC[interval]))
THEN ((REWRITE_TAC[REAL_ARITH `(x*. y -. f*. g) = (f *.(y -. g) +. (x -. f)*.g +. (x-.f)*.(y-. g))`]))
THEN (DISCH_ALL_TAC)
THEN ((ASSUME_TAC (SPECL [`f*.(y-g)`;`(x-f)*g +. (x-f)*.(y-g)`] ABS_TRIANGLE)))
THEN ((ASSUME_TAC (SPECL [`(x-f)*.g`;`(x-f)*.(y-g)`] ABS_TRIANGLE)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_REWRITE_RULE [THM ABS_MUL] (HYP_INT 0)))
THEN ((H_MATCH_MP (THM (SPECL [`g:real`; `abs (x -. f)`; `ex:real`] REAL_PROP_LE_RABS)) (HYP_INT 4)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_MATCH_MP (THM (SPECL [`f:real`; `abs (y -. g)`; `ey:real`] REAL_PROP_LE_LABS)) (HYP_INT 7)))
THEN (((H_VAL2 (IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((H_MATCH_MP (THM (SPECL [`x-.f`; `abs (y -. g)`; `ey:real`] REAL_PROP_LE_LABS)) (HYP_INT 9)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 1)))
THEN ((ASSUME_TAC (SPECL [`abs(x-.f)`;`ex:real`;`y-.g`;`ey:real`] REAL_LE_ABS_MUL)))
THEN ((H_CONJ (HYP_INT 11) (HYP_INT 12)))
THEN ((H_MATCH_MP (HYP_INT 1) (HYP_INT 0)))
THEN (((H_VAL2(IWRITE_REAL_LE_RHS)) (HYP_INT 0) (HYP_INT 3)))
THEN ((POP_ASSUM ACCEPT_TAC)));;
(* ------------------------------------------------------------------ *)
(* INTERVAL BASIC OPERATIONS *)
(* ------------------------------------------------------------------ *)
let INTERVAL_NUM = prove(
`!n. (interval(&.n) (float(&:n) (&:0)) (float (&: 0) (&:0)))`,
(REWRITE_TAC[interval;float;TWOPOW_POS;pow;REAL_MUL_RID;INT_NUM_REAL;REAL_SUB_REFL;REAL_ABS_0;REAL_LE_REFL]));;
let INTERVAL_CENTER = prove(
`!x f ex g. (interval x f ex) ==> (interval x g (abs(f-g)+.ex))`,
((REWRITE_TAC[interval]))
THEN (DISCH_ALL_TAC)
THEN ((ASSUME_TAC (REAL_ARITH `abs(x -. g) <=. abs(f-.g) +. abs(x -. f)`)))
THEN ((H_VAL2 IWRITE_REAL_LE_RHS (HYP_INT 1) (HYP_INT 0)))
THEN ((ASM_REWRITE_TAC[])));;
let INTERVAL_WIDTH = prove(
`!x f ex ex'. (ex <=. ex') ==> (interval x f ex) ==> (interval x f ex')`,
((REWRITE_TAC[interval]))
THEN (DISCH_ALL_TAC)
THEN ((H_VAL2 IWRITE_REAL_LE_RHS (HYP_INT 1) (HYP_INT 0)))
THEN ((ASM_REWRITE_TAC[])));;
let INTERVAL_MAX = prove(
`!x f ex. interval x f ex ==> (x <=. f+.ex)`,
(REWRITE_TAC[interval]) THEN REAL_ARITH_TAC);;
let INTERVAL_MIN = prove(
`!x f ex. interval x f ex ==> (f-. ex <=. x)`,
(REWRITE_TAC[interval]) THEN REAL_ARITH_TAC);;
let INTERVAL_ABS_MIN = prove(
`!x f ex. interval x f ex ==> (abs(f)-. ex <=. abs(x))`,
(REWRITE_TAC[interval] THEN REAL_ARITH_TAC)
);;
let INTERVAL_ABS_MAX = prove(
`!x f ex. interval x f ex ==> (abs(x) <=. abs(f)+. ex)`,
(REWRITE_TAC[interval] THEN REAL_ARITH_TAC)
);;
let REAL_RINV_2 = prove(
`&.2 *. (inv (&.2 )) = &. 1`,
EVERY[
MATCH_MP_TAC REAL_MUL_RINV;
REAL_ARITH_TAC]);;
let INTERVAL_MK = prove(
`let half = float(&:1)(--:(&:1)) in
!x xmin xmax. ((xmin <=. x) /\ (x <=. xmax)) ==>
interval x
((xmin+.xmax)*.half)
((xmax-.xmin)*.half)`,
EVERY[
REWRITE_TAC[LET_DEF;LET_END_DEF];
DISCH_ALL_TAC;
REWRITE_TAC[interval;float;TWOPOW_NEG;INT_NUM_REAL;REAL_POW_1;REAL_MUL_LID];
REWRITE_TAC[GSYM INTERVAL_ABS];
CONJ_TAC
]
THENL[
EVERY[
REWRITE_TAC[GSYM REAL_SUB_RDISTRIB];
REWRITE_TAC[REAL_ARITH `(b+.a)-.(a-.b)=b*.(&.2)`;GSYM REAL_MUL_ASSOC];
ASM_REWRITE_TAC[REAL_RINV_2;REAL_MUL_RID]
];
EVERY[
REWRITE_TAC[GSYM REAL_ADD_RDISTRIB];
REWRITE_TAC[REAL_ARITH `(b+.a)+. a -. b=a*.(&.2)`;GSYM REAL_MUL_ASSOC];
ASM_REWRITE_TAC[REAL_RINV_2;REAL_MUL_RID]
]
]);;
let INTERVAL_EPS_POS = prove(`!x f ex.
(interval x f ex) ==> (&.0 <=. ex)`,
EVERY[
REWRITE_TAC[interval];
REPEAT (GEN_TAC);
DISCH_THEN(fun x -> (MP_TAC (CONJ (SPEC `x-.f` REAL_ABS_POS) x)));
MATCH_ACCEPT_TAC REAL_LE_TRANS]);;
let INTERVAL_EPS_0 = prove(
`!x f n. (interval x f (float (&:0) n)) ==> (x = f)`,
EVERY[
REWRITE_TAC[interval;float;int_of_num_th;REAL_MUL_LZERO];
REAL_ARITH_TAC]);;
let REAL_EQ_RCANCEL_IMP' = prove(`!x y z.(x * z = y * z) ==> (~(z = &0) ==> (x=y))`,
MESON_TAC[REAL_EQ_RCANCEL_IMP]);;
(* renamed from REAL_ABS_POS *)
let REAL_MK_POS_ABS_' = prove (`!x. (~(x=(&.0))) ==> (&.0 < abs(x))`,
MESON_TAC[REAL_PROP_NZ_ABS;ABS_POS;REAL_LT_LE]);;
(* ------------------------------------------------------------------ *)
(* INTERVAL DIVIDE *)
(* ------------------------------------------------------------------ *)
let INTERVAL_DIV = prove(`!x f ex y g ey h ez.
(((interval x f ex) /\ (interval y g ey) /\ (ey <. (abs g)) /\
((ex +. (abs (f -. (h*.g))) +. (abs h)*. ey) <=. (ez*.((abs g) -. ey))))
==> (interval (x / y) h ez))`,
let lemma1 = prove( `&.0 < u /\ ||. z <=. e*. u ==> (&.0) <=. e`,
EVERY[
DISCH_ALL_TAC;
ASSUME_TAC (SPEC `z:real` REAL_MK_NN_ABS);
H_MATCH_MP (THM REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 2));
H_MATCH_MP (THM REAL_PROP_NN_RCANCEL) (H_RULE2 CONJ (HYP_INT 2) (HYP_INT 0));
ASM_REWRITE_TAC[]
]) in
EVERY[
DISCH_ALL_TAC;
SUBGOAL_TAC `~(y= (&.0))`
THENL[
EVERY[
UNDISCH_LIST[1;2];
REWRITE_TAC[interval];
REAL_ARITH_TAC
];
EVERY[
REWRITE_TAC[interval];
DISCH_TAC THEN (H I (HYP_INT 0)) THEN (UNDISCH_EL_TAC 0);
DISCH_THEN (fun th -> (MP_TAC(MATCH_MP REAL_MK_POS_ABS_' th)));
MATCH_MP_TAC REAL_MUL_RTIMES_LE;
REWRITE_TAC[GSYM ABS_MUL;REAL_SUB_RDISTRIB;real_div;GSYM REAL_MUL_ASSOC];
ASM_SIMP_TAC[REAL_MUL_LINV;REAL_MUL_RID];
H (REWRITE_RULE[interval]) (HYP_INT 1);
H (REWRITE_RULE[interval]) (HYP_INT 3);
H (MATCH_MP INTERVAL_ABS_MIN) (HYP_INT 4);
POPL_TAC[3;4;5];
H_VAL2 (IWRITE_REAL_LE_LHS) (HYP_INT 2) (HYP_INT 4);
H (REWRITE_RULE[ REAL_ADD_ASSOC]) (HYP_INT 0);
H_VAL2 (IWRITE_REAL_LE_LHS) (THM (SPEC `f-. h*g` (SPEC `x-.f` ABS_TRIANGLE))) (HYP_INT 0);
H (ONCE_REWRITE_RULE[REAL_ABS_SUB]) (HYP_INT 4);
H (MATCH_MP (SPEC `h:real` REAL_PROP_LE_LABS)) (HYP_INT 0);
H (REWRITE_RULE[GSYM ABS_MUL]) (HYP_INT 0);
H_VAL2 (IWRITE_REAL_LE_LHS) (HYP_INT 0) (HYP_INT 3);
H_VAL2 (IWRITE_REAL_LE_LHS) (THM (SPEC `h*.(g-.y)` (SPEC`(x-.f)+(f-. h*g)` ABS_TRIANGLE))) (HYP_INT 0);
POPL_TAC[1;2;3;4;5;6;7;9;10;12];
H (ONCE_REWRITE_RULE[REAL_ARITH `((x-.f) +. (f -. h*. g)) +. h*.(g-. y) = x -. h*. y `]) (HYP_INT 0);
ABBREV_TAC `z = x -. h*.y`;
H (ONCE_REWRITE_RULE[GSYM REAL_SUB_LT]) (HYP_INT 4);
ABBREV_TAC `u = abs(g) -. ey`;
POPL_TAC[0;2;4;6];
H (MATCH_MP lemma1 ) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 1));
H (MATCH_MP REAL_PROP_LE_LMUL) (H_RULE2 CONJ (HYP_INT 0) (HYP_INT 3));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
ASM_REWRITE_TAC[]
];
]]);;
(* ------------------------------------------------------------------ *)
(* INTERVAL ABS VALUE *)
(* ------------------------------------------------------------------ *)
let INTERVAL_ABSV = prove(`!x f ex. interval x f ex ==> (interval (abs x) (abs f) ex)`,
EVERY[
REWRITE_TAC[interval];
DISCH_ALL_TAC;
ASSUME_TAC (SPECL [`x:real`;`f:real`] REAL_ABS_SUB_ABS);
ASM_MESON_TAC[REAL_LE_TRANS]
]);; (* 7 minutes *)
(* ------------------------------------------------------------------ *)
(* INTERVAL SQRT *)
(* This requires some preliminaries. Extend sqrt by 0 on negatives *)
(* ------------------------------------------------------------------ *)
let ssqrt = new_definition `ssqrt x = if (x <. (&.0)) then (&.0) else sqrt x`;; (*2m*)
let LET_TAC = REWRITE_TAC[LET_DEF;LET_END_DEF];;
let REAL_SSQRT_NEG = prove(`!x. (x <. (&.0)) ==> (ssqrt x = (&.0))`,
EVERY[
DISCH_ALL_TAC;
REWRITE_TAC[ssqrt];
COND_CASES_TAC
THENL[
ACCEPT_TAC (REFL `&.0`);
ASM_MESON_TAC[]
]
]);;
(* 5 min*)
let REAL_SSQRT_NN = prove(`!x. (&.0) <=. x ==> (ssqrt x = (sqrt x))`,
EVERY[
DISCH_ALL_TAC;
REWRITE_TAC[ssqrt];
COND_CASES_TAC
THENL[
ASM_MESON_TAC[real_lt];
ACCEPT_TAC (REFL `sqrt x`)
]
]);; (* 12 min, mostly spent loading *index-shell* *)
(*17 minutes*)
let REAL_MK_NN_SSQRT = prove(`!x. (&.0) <=. (ssqrt x)`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
POP_ASSUM (fun th -> MP_TAC(MATCH_MP (REAL_SSQRT_NEG) th)) THEN
MESON_TAC[REAL_LE_REFL];
POP_ASSUM (fun th -> ASSUME_TAC(CONJ th (MATCH_MP (REAL_SSQRT_NN) th))) THEN
ASM_MESON_TAC[REAL_PROP_NN_SQRT]
]
]);;
let REAL_SV_SSQRT_0 = prove(`!x. ssqrt (&.0) = (&.0)`,
EVERY[
GEN_TAC;
MP_TAC (SPEC `&.0` REAL_LE_REFL);
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP REAL_SSQRT_NN th]);
ACCEPT_TAC REAL_SV_SQRT_0
]);; (* 6 minutes *)
let REAL_SSQRT_EQ_0 = prove(`!(x:real). (ssqrt(x) = (&.0)) ==> (x <=. (&.0))`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
ASM_MESON_TAC[REAL_LT_IMP_LE];
ASM_SIMP_TAC[REAL_SSQRT_NN] THEN
ASM_MESON_TAC[SQRT_EQ_0;REAL_EQ_IMP_LE]
]
]);; (* 15 minutes *)
let REAL_SSQRT_MONO = prove(`!x. (x<=. y) ==> (ssqrt x <=. (ssqrt y))`,
EVERY[
GEN_TAC;
DISJ_CASES_TAC (SPECL[`x:real`;`&.0`] REAL_LTE_TOTAL)
THENL[
ASM_MESON_TAC[REAL_SSQRT_NEG;REAL_MK_NN_SSQRT];
ASM_MESON_TAC[REAL_LE_TRANS;REAL_SSQRT_NN;REAL_PROP_LE_SQRT];
]
]);; (* 5 minutes *)
let REAL_SSQRT_CHAR = prove(`!x t. (&.0 <=. t /\ (t*t = x)) ==> (t = (ssqrt x))`,
EVERY[
DISCH_ALL_TAC;
H_ASSUME_TAC (H_RULE_LIST REWRITE_RULE[HYP_INT 1] (THM (SPEC `t:real` REAL_MK_NN_SQUARE)));
ASM_MESON_TAC[REAL_SSQRT_NN;SQRT_MUL;POW_2_SQRT_ABS;REAL_POW_2;REAL_ABS_REFL];
]);; (* 13 minutes *)
let REAL_SSQRT_SQUARE = prove(`!x. (&.0 <=. x) ==> ((ssqrt x)*.(ssqrt x) = x)`,
MESON_TAC[REAL_SSQRT_NN;POW_2;SQRT_POW_2]);;(* 7min *)
let REAL_SSQRT_SQUARE' = prove(`!x. (&.0<=. x) ==> (ssqrt (x*.x) = x)`,
DISCH_ALL_TAC THEN
REWRITE_TAC[(MATCH_MP REAL_SSQRT_NN (SPEC `x:real` REAL_MK_NN_SQUARE))] THEN
ASM_SIMP_TAC[SQRT_MUL;GSYM POW_2;SQRT_POW_2]);; (*20min*)
(* an alternate proof appears in RCS *)
let INTERVAL_SSQRT = prove(`!x f ex u ey ez v. (interval x f ex) /\ (interval (u*.u) f ey) /\
(ex +.ey <=. ez*.(v+.u)) /\ (v*.v <=. f-.ex) /\ (&.0 <. u) /\ (&.0 <=. v) ==>
(interval (ssqrt x) u ez)`,
EVERY[
DISCH_ALL_TAC;
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (THM (SPEC `v:real` REAL_MK_NN_SQUARE)) (HYP_INT 3));
H (MATCH_MP (INTERVAL_MIN)) (HYP_INT 1);
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP INTERVAL_EPS_POS) (HYP_INT 3);
H (MATCH_MP INTERVAL_EPS_POS) (HYP_INT 5);
H (MATCH_MP REAL_PROP_NN_ADD2) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP REAL_PROP_POS_LADD) (H_RULE2 CONJ (HYP_INT 11) (HYP_INT 10));
H (MATCH_MP REAL_PROP_POS_LADD) (H_RULE2 CONJ (THM (SPEC `x:real` REAL_MK_NN_SSQRT)) (HYP_INT 11));
H (MATCH_MP REAL_PROP_POS_INV) (HYP_INT 0);
ASSUME_TAC (REAL_ARITH `(ssqrt x -. u) = (ssqrt x -. u)*.(&.1)`);
H (MATCH_MP REAL_MK_NZ_POS) (HYP_INT 2);
H (MATCH_MP REAL_MUL_RINV) (HYP_INT 0);
H_REWRITE_RULE[(H_RULE GSYM) (HYP_INT 0)] (HYP_INT 2);
POPL_TAC[1;2;3];
H (REWRITE_RULE[REAL_MUL_ASSOC]) (HYP_INT 0);
H (REWRITE_RULE[ONCE_REWRITE_RULE[REAL_MUL_SYM] REAL_DIFFSQ]) (HYP_INT 0);
POPL_TAC[1;2];
H_SIMP_RULE[HYP_INT 7;THM REAL_SSQRT_SQUARE] (HYP_INT 0);
ASSUME_TAC (REAL_ARITH `abs(x -. u*.u) <=. abs(x -. f) + abs(f-. u*.u)`);
H (REWRITE_RULE[interval]) (HYP_INT 12);
H (ONCE_REWRITE_RULE[interval]) (HYP_INT 14);
H (ONCE_REWRITE_RULE[REAL_ABS_SUB]) (HYP_INT 0);
POPL_TAC[1;5;15;16];
H (MATCH_MP REAL_LE_ADD2) (H_RULE2 CONJ (HYP_INT 1) (HYP_INT 0));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
POPL_TAC[1;2;3;4];
H (AP_TERM `||.`) (HYP_INT 1);
H (REWRITE_RULE[ABS_MUL]) (HYP_INT 0);
H (MATCH_MP REAL_LT_IMP_LE) (HYP_INT 4);
H (REWRITE_RULE[GSYM REAL_ABS_REFL]) (HYP_INT 0);
H_REWRITE_RULE [HYP_INT 0] (HYP_INT 2);
H (MATCH_MP REAL_LE_RMUL) (H_RULE2 CONJ (HYP_INT 5) (HYP_INT 2));
H_REWRITE_RULE [H_RULE GSYM (HYP_INT 1)] (HYP_INT 0);
POPL_TAC[1;2;3;5;6;7;8];
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 12) (HYP_INT 9));
H (MATCH_MP REAL_SSQRT_MONO) (HYP_INT 0);
H (MATCH_MP REAL_SSQRT_SQUARE') (HYP_INT 16);
H_REWRITE_RULE [HYP_INT 0] (HYP_INT 1);
H (ONCE_REWRITE_RULE[GSYM (SPECL[`v:real`;`ssqrt x`;`u:real`] REAL_LE_RADD)]) (HYP_INT 0);
H (MATCH_MP REAL_LE_INV2) (H_RULE2 CONJ (HYP_INT 9) (HYP_INT 0));
POPL_TAC[1;2;3;4;5;7;8;9;12;13];
H (MATCH_MP REAL_LE_LMUL) (H_RULE2 CONJ (HYP_INT 3) (HYP_INT 0));
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 2) (HYP_INT 0));
H (MATCH_MP REAL_PROP_POS_INV) (HYP_INT 4);
H (MATCH_MP REAL_LT_IMP_LE) (HYP_INT 0);
H (MATCH_MP REAL_LE_RMUL) (H_RULE2 CONJ (HYP_INT 11) (HYP_INT 0));
H (REWRITE_RULE[GSYM REAL_MUL_ASSOC]) (HYP_INT 0);
H (MATCH_MP REAL_MK_NZ_POS) (HYP_INT 8);
H (MATCH_MP REAL_MUL_RINV) (HYP_INT 0);
H_REWRITE_RULE[HYP_INT 0; THM REAL_MUL_RID] (HYP_INT 2);
H (MATCH_MP REAL_LE_TRANS) (H_RULE2 CONJ (HYP_INT 7) (HYP_INT 0));
ASM_REWRITE_TAC[interval]
]);;
test();;
(* conversion for interval *)
(* ------------------------------------------------------------------ *)
(* Take a term x of type real. Convert to a thm of the form *)
(* interval x f eps *)
(* *)
(* ------------------------------------------------------------------ *)
let DOUBLE_CONV_FILE=true;;
let add_test,test = new_test_suite();;
(* Num package docs at http://caml.inria.fr/ocaml/htmlman/libref/Num.html *)
(* ------------------------------------------------------------------ *)
(* num_exponent
Take the absolute value of input.
Write it as a*2^k, where 1 <= a < 2, return k.
Except:
num_exponent (Int 0) is -1.
*)
let (num_exponent:Num.num -> Num.num) =
fun a ->
let afloat = float_of_num (abs_num a) in
Int ((snd (frexp afloat)) - 1);;
(*test*)let f (u,v) = ((num_exponent u) =(Int v)) in
add_test("num_exponenwt",
forall f
[Int 1,0; Int 65,6; Int (-65),6;
Int 0,-1; (Int 3)//(Int 4),-1]);;
(* ------------------------------------------------------------------ *)
let dest_unary op tm =
try let xop,r = dest_comb tm in
if xop = op then r else fail()
with Failure _ -> failwith "dest_unary";;
(* ------------------------------------------------------------------ *)
(* finds a nearby (outward-rounded) Int with only prec_b significant bits *)
let (round_outward: int -> Num.num -> Num.num) =
fun prec_b a ->
let b = abs_num a in
let sign = if (a =/ b) then I else minus_num in
let throw_bits = Num.max_num (Int 0) ((num_exponent b)-/ (Int prec_b)) in
let twoexp = power_num (Int 2) throw_bits in
(sign (ceiling_num (b // twoexp)))*/twoexp;;
let (round_inward: int-> Num.num -> Num.num) =
fun prec_b a ->
let b = abs_num a in
let sign = if (a=/b) then I else minus_num in
let throw_bits = Num.max_num (Int 0) ((num_exponent b)-/ (Int prec_b)) in
let twoexp = power_num (Int 2) throw_bits in
(sign (floor_num (b // twoexp)))*/twoexp;;
let round_rat bprec n =
let b = abs_num n in
let sign = if (b =/ n) then I else minus_num in
let powt = ((Int 2) **/ (Int bprec)) in
sign ((round_outward bprec (Num.ceiling_num (b */ powt)))//powt);;
let round_inward_rat bprec n =
let b = abs_num n in
let sign = if (b =/ n) then I else minus_num in
let powt = ((Int 2) **/ (Int bprec)) in
sign ((round_inward bprec (Num.floor_num (b */ powt)))//powt);;
let (round_outward_float: int -> float -> Num.num) =
fun bprec f ->
if (f=0.0) then (Int 0) else
begin
let b = abs_float f in
let sign = if (f >= 0.0) then I else minus_num in
let (x,n) = frexp b in
let u = int_of_float( ceil (ldexp x bprec)) in
sign ((Int u)*/ ((Int 2) **/ (Int (n - bprec))))
end;;
let (round_inward_float: int -> float -> Num.num) =
fun bprec f ->
if (f=0.0) then (Int 0) else
begin
(* avoid overflow on 30 bit integers *)
let bprec = if (bprec > 25) then 25 else bprec in
let b = abs_float f in
let sign = if (f >= 0.0) then I else minus_num in
let (x,n) = frexp b in
let u = int_of_float( floor (ldexp x bprec)) in
sign ((Int u)*/ ((Int 2) **/ (Int (n - bprec))))
end;;
(* ------------------------------------------------------------------ *)
(* This doesn't belong here. A general term substitution function *)
let SUBST_TERM sublist tm =
rhs (concl ((SPECL (map fst sublist)) (GENL (map snd sublist)
(REFL tm))));;
add_test("SUBST_TERM",
SUBST_TERM [(`#1`,`a:real`);(`#2`,`b:real`)] (`a +. b +. c`) =
`#1 + #2 + c`);;
(* ------------------------------------------------------------------ *)
(* take a term of the form `interval x f ex` and clean up the f and ex *)
let INTERVAL_CLEAN_CONV:conv =
fun interv ->
let (ixf,ex) = dest_comb interv in
let (ix,f) = dest_comb ixf in
let fthm = FLOAT_CONV f in
let exthm = FLOAT_CONV ex in
let ixfthm = AP_TERM ix fthm in
MK_COMB (ixfthm, exthm);;
(*test*) add_test("INTERVAL_CLEAN_CONV",
let testval = INTERVAL_CLEAN_CONV `interval ((&.1) +. (&.1))
(float (&:3) (&:4) +. (float (&:2) (--: (&:3))))
(float (&:1) (&:2) *. (float (&:3) (--: (&:2))))` in
let hypval = hyp testval in
let concval = concl testval in
(length hypval = 0) &&
concval =
`interval (&1 + &1) (float (&:3) (&:4) + float (&:2) (--: (&:3)))
(float (&:1) (&:2) * float (&:3) (--: (&:2))) =
interval (&1 + &1) (float (&:386) (--: (&:3))) (float (&:3) (&:0))`
);;
(* ------------------------------------------------------------------ *)
(* GENERAL lemmas *)
(* ------------------------------------------------------------------ *)
(* verifies statement of the form `float a b = float a' b'` *)
let FLOAT_EQ = prove(
`!a b a' b'. (float a b = (float a' b')) <=>
((float a b) -. (float a' b') = (&.0))`,MESON_TAC[REAL_SUB_0]);;
let FLOAT_LT = prove(
`!a b a' b'. (float a b <. (float a' b')) <=>
((&.0) <. (float a' b') -. (float a b))`,MESON_TAC[REAL_SUB_LT]);;
let FLOAT_LE = prove(
`!a b a' b'. (float a b <=. (float a' b')) <=>
((&.0) <=. (float a' b') -. (float a b))`,MESON_TAC[REAL_SUB_LE]);;
let TWOPOW_MK_POS = prove(
`!a. (&.0 <. ( twopow a))`,
EVERY[
GEN_TAC;
CHOOSE_TAC (SPEC `a:int` INT_REP2);
POP_ASSUM DISJ_CASES_TAC;
ASM_REWRITE_TAC[TWOPOW_POS;TWOPOW_NEG];
TRY (MATCH_MP_TAC REAL_INV_POS);
MATCH_MP_TAC REAL_POW_LT ;
REAL_ARITH_TAC;
]);;
let TWOPOW_NZ = prove(
`!a. ~(twopow a = (&.0))`,
GEN_TAC THEN
ACCEPT_TAC (MATCH_MP REAL_MK_NZ_POS (SPEC `a:int` TWOPOW_MK_POS)));;
let FLOAT_ZERO = prove(
`!a b. (float a b = (&.0)) <=> (a = (&:0))`,
EVERY[
REWRITE_TAC[float;REAL_ENTIRE;INT_OF_NUM_DEST];
MESON_TAC[TWOPOW_NZ];
]);;
let INT_ZERO = prove(
`!n. ((&:n = (&:0)) = (n=0))`,REWRITE_TAC[INT_OF_NUM_EQ]);;
let INT_ZERO_NEG=prove(
`!n. ((--: (&:n) = (&:0))) <=> (n=0)`,
REWRITE_TAC[INT_NEG_EQ_0;INT_ZERO]);;
let FLOAT_NN = prove(
`!a b. ((&.0) <=. (float a b)) <=> (&:0 <=: a)`,
EVERY[
REWRITE_TAC[float;INT_OF_NUM_DEST];
REP_GEN_TAC;
EQ_TAC THENL[EVERY[
DISCH_ALL_TAC;
INPUT_COMBO[THM REAL_PROP_NN_RCANCEL;THM (SPEC `b:int` TWOPOW_MK_POS) &&& (HYP"0")];
ASM_MESON_TAC[int_le;int_of_num_th]];
EVERY[
DISCH_ALL_TAC;
INPUT_COMBO[THM REAL_PROP_NN_POS;THM(SPEC`b:int`TWOPOW_MK_POS)];
INPUT_COMBO[THM int_of_num_th ; THM int_le ;(HYP"0")];
INPUT_COMBO[THM REAL_PROP_NN_MUL2; (HYP"2")&&&(HYP"1")];
ASM_REWRITE_TAC[]]]
]);;
let INT_NN = INT_POS;;
let INT_NN_NEG = prove(`!n. ((&:0) <=: (--:(&:n))) <=> (n = 0)`,
REWRITE_TAC[INT_NEG_GE0;INT_OF_NUM_LE] THEN ARITH_TAC
);;
let FLOAT_POS = prove(`!a b. ((&.0) <. (float a b)) <=> (&:0 <: a)`,
MESON_TAC[FLOAT_NN;FLOAT_ZERO;INT_LT_LE;REAL_LT_LE]);;
let INT_POS' = prove(`!n. (&:0) <: (&:n) <=> (~(n=0) )`,
REWRITE_TAC[INT_OF_NUM_LT] THEN ARITH_TAC);;
let INT_POS_NEG =prove(`!n. ((&:0) <: (--:(&:n))) <=> F`,
REWRITE_TAC[INT_OF_NUM_LT] THEN ARITH_TAC);;
let RAT_LEMMA1_SUB = prove(`~(y1 = &0) /\ ~(y2 = &0) ==>
((x1 / y1) - (x2 / y2) = (x1 * y2 - x2 * y1) * inv(y1) * inv(y2))`,
EVERY[REWRITE_TAC[real_div];
REWRITE_TAC[real_sub;GSYM REAL_MUL_LNEG];
REWRITE_TAC[GSYM real_div];
SIMP_TAC[RAT_LEMMA1];
DISCH_TAC;
MESON_TAC[real_div]]);;
let INTERVAL_0 = prove(`! a f ex. (interval a f ex <=> (&.0 <= (ex - (abs (a -. f)))))`,
MESON_TAC[interval;REAL_SUB_LE]);;
let ABS_NUM = prove (`!m n. abs (&. n -. (&. m)) = &.((m-|n) + (n-|m))`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL [`m:num`;`n:num`] LTE_CASES) THENL[
(* first case *)
EVERY[ LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM REAL_OF_NUM_LT)] (HYP "0");
LABEL_ALL_TAC;
H_ONCE_REWRITE_RULE[THM (GSYM REAL_SUB_LT)] (HYP "1");
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LT_IMP_LE) (HYP "2");
LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM ABS_REFL)] (HYP "3");
ASM_REWRITE_TAC[];
H_MATCH_MP (THM LT_IMP_LE) (HYP "0");
ASM_SIMP_TAC[REAL_OF_NUM_SUB];
REWRITE_TAC[REAL_OF_NUM_EQ];
ONCE_REWRITE_TAC[ARITH_RULE `!x:num y:num. (x = y) = (y = x)`];
REWRITE_TAC[EQ_ADD_RCANCEL_0];
ASM_REWRITE_TAC[SUB_EQ_0]];
(* second case *)
EVERY[LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM REAL_OF_NUM_LE)] (HYP "0");
LABEL_ALL_TAC;
H_ONCE_REWRITE_RULE[THM (GSYM REAL_SUB_LE)] (HYP "1");
LABEL_ALL_TAC;
H_REWRITE_RULE [THM (GSYM ABS_REFL)] (HYP "2");
ONCE_REWRITE_TAC[GSYM REAL_ABS_NEG];
REWRITE_TAC[REAL_ARITH `!x y. --.(x -. y) = (y-x)`];
ASM_REWRITE_TAC[];
ASM_SIMP_TAC[REAL_OF_NUM_SUB];
REWRITE_TAC[REAL_OF_NUM_EQ];
ONCE_REWRITE_TAC[ARITH_RULE `!x:num y:num. (x = y) <=> (y = x)`];
REWRITE_TAC[EQ_ADD_LCANCEL_0];
ASM_REWRITE_TAC[SUB_EQ_0]]]);;
let INTERVAL_TO_LESS = prove(
`!a f ex b g ey. ((interval a f ex) /\ (interval b g ey) /\
(&.0 <. (g -. (ey +. ex +. f)))) ==> (a <. b)`,
let lemma1 = REAL_ARITH `!ex ey f g. (&.0 <.
(g -. (ey +. ex +. f))) ==> ((f +. ex)<. (g -. ey)) ` in
EVERY[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
H_MATCH_MP (THM lemma1) (HYP "2");
H_MATCH_MP (THM INTERVAL_MAX) (HYP "0");
H_MATCH_MP (THM INTERVAL_MIN) (HYP "1");
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LET_TRANS) (H_RULE2 CONJ (HYP "4") (HYP "5"));
LABEL_ALL_TAC;
H_MATCH_MP (THM REAL_LTE_TRANS) (H_RULE2 CONJ (HYP "6") (HYP "3"));
ASM_REWRITE_TAC[]
]);;
let ABS_TO_INTERVAL = prove(
`!c u k. (abs (c - u) <=. k) ==> (!f g ex ey.((interval u f ex) /\ (interval k g ey) ==> (interval c f (g+.ey+.ex))))`,
EVERY[
REWRITE_TAC[interval];
DISCH_ALL_TAC;
REPEAT GEN_TAC;
DISCH_ALL_TAC;
ONCE_REWRITE_TAC [REAL_ARITH `c -. f = (c-. u) + (u-. f)`];
ONCE_REWRITE_TAC [REAL_ADD_ASSOC];
ASSUME_TAC (SPECL [`c-.u`;`u-.f`] ABS_TRIANGLE);
IMP_RES_THEN ASSUME_TAC (REAL_ARITH `||.(k-.g) <=. ey ==> (k <=. (g +. ey))`);
MATCH_MP_TAC (REAL_ARITH `(?a b.((x <=. (a+.b)) /\ (a <=. u) /\ (b <=. v))) ==> (x <=. (u +. v))`);
EXISTS_TAC `abs (c-.u)`;
EXISTS_TAC `abs(u-.f)`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[REAL_LE_TRANS];
]);;
(* end of general lemmas *)
(* ------------------------------------------------------------------ *)
(* ------------------------------------------------------------------ *)
(* Cache of computed constants (abs (c - u) <= k) *)
(* ------------------------------------------------------------------ *)
let calculated_constants = ref ([]:(term*thm) list);;
let add_real_constant ineq =
try(
let (abst,k) = dest_binop `(<=.)` (concl ineq) in
let (absh,cmu) = dest_comb abst in
let (c,u) = dest_binop `(-.)` cmu in
calculated_constants := (c,ineq)::(!calculated_constants))
with _ ->
(try(
let (c,f,ex) = dest_interval (concl ineq) in
calculated_constants := (c,ineq)::(!calculated_constants))
with _ -> failwith "calculated_constants format : abs(c - u) <= k");;
let get_real_constant tm =
assoc tm !calculated_constants;;
let remove_real_constant tm =
calculated_constants :=
filter (fun t -> not ((fst t) = tm)) !calculated_constants;;
(* ------------------------------------------------------------------ *)
(* term of the form '&.n'. Assume error checking done already. *)
let INTERVAL_OF_NUM:conv =
fun tm ->
let tm1 = snd (dest_comb tm) in
let th1 = (ARITH_REWRITE_CONV[] tm1) in
ONCE_REWRITE_RULE[AP_TERM `&.` (GSYM th1)]
(SPEC (rhs (concl th1)) INTERVAL_NUM);;
add_test("INTERVAL_OF_NUM",
dest_thm (INTERVAL_OF_NUM `&.3`) = ([],
`interval (&3) (float (&:3) (&:0)) (float (&:0) (&:0))`));;
(* term of the form `--. (&.n)`. Assume format checking already done. *)
let INTERVAL_OF_NEG:conv =
fun tm ->
let (sign,u) = dest_comb tm in
let _ = assert(sign = `--.`) in
let (amp,tm1) = (dest_comb u) in
let _ = assert(amp = `&.`) in
let th1 = (ARITH_REWRITE_CONV[] tm1) in
ONCE_REWRITE_RULE[FLOAT_NEG] (
ONCE_REWRITE_RULE[INTERVAL_NEG] (
ONCE_REWRITE_RULE[AP_TERM `&.` (GSYM th1)] (
(SPEC (rhs (concl th1)) INTERVAL_NUM))));;
add_test("INTERVAL_OF_NEG",
dest_thm (INTERVAL_OF_NEG `--.(&. (3+4))`) =
([],`interval( --.(&.(3 + 4)) )
(float (--: (&:7)) (&:0)) (float (&:0) (&:0))`));;
(* ------------------------------------------------------------------ *)
let INTERVAL_TO_LESS_CONV = fun thm1 thm2 ->
let (a,f,ex) = dest_interval (concl thm1) in
let (b,g,ey) = dest_interval (concl thm2) in
let rthm = ASSUME `!f g ex ey. (&.0 <. (g -. (ey +. ex +. f)))` in
let rspec = concl (SPECL [f;g;ex;ey] rthm) in
let rspec_simp = FLOAT_CONV (snd (dest_binop `(<.)` rspec)) in
let rthm2 = prove (rspec,REWRITE_TAC[rspec_simp;FLOAT_POS;INT_POS';
INT_POS_NEG] THEN ARITH_TAC) in
let fthm = CONJ thm1 (CONJ thm2 rthm2) in
MATCH_MP INTERVAL_TO_LESS fthm;;
add_test("INTERVAL_TO_LESS_CONV",
let thm1 = ASSUME
`interval (#0.1) (float (&:1) (--: (&:1))) (float (&:1) (--: (&:2)))` in
let thm2 = ASSUME `interval (#7) (float (&:4) (&:1)) (float (&:1) (&:0))` in
let thm3 = INTERVAL_TO_LESS_CONV thm1 thm2 in
concl thm3 = `#0.1 <. (#7)`);;
add_test("INTERVAL_TO_LESS_CONV2",
let (h,c) = dest_thm (INTERVAL_TO_LESS_CONV
(INTERVAL_OF_NUM `&.3`) (INTERVAL_OF_NUM `&.8`)) in
(h=[]) && (c = `&.3 <. (&.8)`));;
(* ------------------------------------------------------------------ *)
(* conversion for DEC <= posfloat and posfloat <= DEC *)
let lemma1 = prove(
`!n m p. ((&.p/(&.m)) <= (&.n)) <=> ((&.p/(&.m)) <= (&.n)/(&.1))`,
MESON_TAC[REAL_DIV_1]);;
let lemma2 = prove(
`!n m p. ((&.p) <= ((&.n)/(&.m))) <=> ((&.p/(&.1)) <= (&.n)/(&.m))`,
MESON_TAC[REAL_DIV_1]);;
let lemma3 = prove(`!a b c d. (
((0<b) /\ (0<d) /\ (a*d <=| c*b))
==> (&.a/(&.b) <=. ((&.c)/(&.d))))`,
EVERY[REPEAT GEN_TAC;
DISCH_ALL_TAC;
ASM_SIMP_TAC[RAT_LEMMA4;REAL_LT;REAL_OF_NUM_MUL;REAL_LE]]);;
let DEC_FLOAT = EQT_ELIM o
ARITH_SIMP_CONV[DECIMAL;float;TWOPOW_POS;TWOPOW_NEG;GSYM real_div;
REAL_OF_NUM_POW;INT_NUM_REAL;REAL_OF_NUM_MUL;
lemma1;lemma2;lemma3];;
add_test("DEC_FLOAT",
let f c x =
dest_thm (c x) = ([],x) in
((f DEC_FLOAT `#10.0 <= (float (&:3) (&:2))`) &&
(f DEC_FLOAT `#10 <= (float (&:3) (&:2))`) &&
(f DEC_FLOAT `#0.1 <= (float (&:1) (--: (&:2)))`) &&
(f DEC_FLOAT `float (&:3) (&:2) <= (#13.0)`) &&
(f DEC_FLOAT `float (&:3) (&:2) <= (#13)`) &&
(f DEC_FLOAT `float (&:1) (--: (&:2)) <= (#0.3)`)));;
(* ------------------------------------------------------------------ *)
(* conversion for float inequalities *)
let FLOAT_INEQ_CONV t =
let thm1= (ONCE_REWRITE_CONV[GSYM REAL_SUB_LT;GSYM REAL_SUB_LE] t) in
let rhsx= rhs (concl thm1) in
let thm2= prove(rhsx,REWRITE_TAC[FLOAT_CONV (snd (dest_comb rhsx))] THEN
REWRITE_TAC[FLOAT_NN;FLOAT_POS;INT_NN;INT_NN_NEG;
INT_POS';INT_POS_NEG] THEN ARITH_TAC) in
REWRITE_RULE[GSYM thm1] thm2;;
let t1 = `(float (&:3) (&:0)) +. (float (&:4) (&:0)) <. (float (&:8) (&:1))`;;
add_test("FLOAT_INEQ_CONV",
let f c x =
dest_thm (c x) = ([],x) in
let t1 =
`(float (&:3) (&:0)) +. (float (&:4) (&:0)) <. (float (&:8) (&:1))` in
((f FLOAT_INEQ_CONV t1)));;
(* ------------------------------------------------------------------ *)
(* converts a DECIMAL TO A THEOREM *)
let INTERVAL_MINMAX = prove(`!x f ex.
((f -. ex) <= x) /\ (x <=. (f +. ex)) ==> (interval x f ex)`,
EVERY[REPEAT GEN_TAC;
REWRITE_TAC[interval;ABS_BOUNDS];
REAL_ARITH_TAC]);;
let INTERVAL_OF_DECIMAL bprec dec =
let a_num = dest_decimal dec in
let f_num = round_rat bprec a_num in
let ex_num = round_rat bprec (Num.abs_num (f_num -/ a_num)) in
let _ = assert (ex_num <=/ f_num) in
let f = mk_float f_num in
let ex= mk_float ex_num in
let fplus_ex = FLOAT_CONV (mk_binop `(+.)` f ex) in
let fminus_ex= FLOAT_CONV (mk_binop `(-.)` f ex) in
let fplus_term = rhs (concl fplus_ex) in
let fminus_term = rhs (concl fminus_ex) in
let th1 = DEC_FLOAT (mk_binop `(<=.)` fminus_term dec) in
let th2 = DEC_FLOAT (mk_binop `(<=.)` dec fplus_term) in
let intv = mk_interval dec f ex in
EQT_ELIM (SIMP_CONV[INTERVAL_MINMAX;fplus_ex;fminus_ex;th1;th2] intv);;
add_test("INTERVAL_OF_DECIMAL",
let (h,c) = dest_thm (INTERVAL_OF_DECIMAL 4 `#36.1`) in
let (x,f,ex) = dest_interval c in
(h=[]) && (x = `#36.1`));;
add_test("INTERVAL_OF_DECIMAL2",
can (fun() -> INTERVAL_TO_LESS_CONV (INTERVAL_OF_DECIMAL 4 `#33.33`)
(INTERVAL_OF_DECIMAL 4 `#36.1`)) ());;
(*--------------------------------------------------------------------*)
(* functions to check format. *)
(* There are various implicit rules: *)
(* NUMERAL is followed by bits and no other kind of num, etc. *)
(* FLOAT a b, both a and b are &:NUMERAL or --:&:NUMERAL, etc. *)
(*--------------------------------------------------------------------*)
(* converts exceptions to false *)
let falsify_ex f x = try (f x) with _ -> false;;
let is_bits_format =
let rec format x =
if (x = `_0`) then true
else let (h,t) = dest_comb x in
(((h = `BIT1`) || (h = `BIT0`)) && (format t))
in falsify_ex format;;
let is_numeral_format =
let fn x =
let (h,t) = dest_comb x in
((h = `NUMERAL`) && (is_bits_format t)) in
falsify_ex fn;;
let is_decimal_format =
let fn x =
let (t1,t2) = dest_binop `DECIMAL` x in
((is_numeral_format t1) && (is_numeral_format t2)) in
falsify_ex fn;;
let is_pos_int_format =
let fn x =
let (h,t) = dest_comb x in
(h = ` &: `) && (is_numeral_format t) in
falsify_ex fn;;
let is_neg_int_format =
let fn x =
let (h,t) = dest_comb x in
(h = ` --: `) && (is_pos_int_format t) in
falsify_ex fn;;
let is_int_format x =
(is_neg_int_format x) || (is_pos_int_format x);;
let is_float_format =
let fn x =
let (t1,t2) = dest_binop `float` x in
(is_int_format t1) && (is_int_format t2) in
falsify_ex fn;;
let is_interval_format =
let fn x =
let (a,b,c) = dest_interval x in
(is_float_format b) && (is_float_format c) in
falsify_ex fn;;
let is_neg_real =
let fn x =
let (h,t) = dest_comb x in
(h= `--.`) in
falsify_ex fn;;
let is_real_num_format =
let fn x =
let (h,t) = dest_comb x in
(h=`&.`) && (is_numeral_format t) in
falsify_ex fn;;
let is_comb_of t u =
let fn t u =
t = (fst (dest_comb u)) in
try (fn t u) with failure -> false;;
(* ------------------------------------------------------------------ *)
(* Heron's formula for the square root of A
Return a value x that is always at most the actual square root
and such that abs (x - A/x ) < epsilon *)
let rec heron_sqrt depth A x eps =
let half = (Int 1)//(Int 2) in
if (depth <= 0) then raise (Failure "sqrt recursion depth exceeded") else
if (Num.abs_num (x -/ (A//x) ) </ eps) && (x*/ x >=/ A) then (A//x) else
let x' = half */ (x +/ (A//x)) in
heron_sqrt (depth -1) A x' eps;;
let INTERVAL_OF_TWOPOW = prove(
`!n. interval (twopow n) (float (&:1) n) (float (&:0) (&:0))`,
REWRITE_TAC[interval;float;int_of_num_th] THEN
REAL_ARITH_TAC
);;
(* ------------------------------------------------------------------ *)
let rec INTERVAL_OF_TERM bprec tm =
(* treat cached values first *)
if (can get_real_constant tm) then
begin
try(
let int_thm = get_real_constant tm in
if (can dest_interval (concl int_thm)) then int_thm
else (
let absthm = get_real_constant tm in
let (abst,k) = dest_binop `(<=.)` (concl absthm) in
let (absh,cmu) = dest_comb abst in
let (c,u) = dest_binop `(-.)` cmu in
let intk = INTERVAL_OF_TERM bprec k in
let intu = INTERVAL_OF_TERM bprec u in
let thm1 = MATCH_MP ABS_TO_INTERVAL absthm in
let thm2 = MATCH_MP thm1 (CONJ intu intk) in
let (_,f,ex)= dest_interval (concl thm2) in
let fthm = FLOAT_CONV f in
let exthm = FLOAT_CONV ex in
let thm3 = REWRITE_RULE[fthm;exthm] thm2 in
(add_real_constant thm3; thm3)
))
with _ -> failwith "INTERVAL_OF_TERM : CONSTANT"
end
else if (is_real_num_format tm) then (INTERVAL_OF_NUM tm)
else if (is_decimal_format tm) then (INTERVAL_OF_DECIMAL bprec tm)
(* treat negative terms *)
else if (is_neg_real tm) then
begin
try(
let (_,t) = dest_comb tm in
let int1 = INTERVAL_OF_TERM bprec t in
let (_,b,_) = dest_interval (concl int1) in
let thm1 = FLOAT_CONV (mk_comb (`--.`, b)) in
REWRITE_RULE[thm1] (ONCE_REWRITE_RULE[INTERVAL_NEG] int1))
with _ -> failwith "INTERVAL_OF_TERM : NEG"
end
(* treat abs value *)
else if (is_comb_of `||.` tm) then
begin
try(
let (_,b) = dest_comb tm in
let b_int = MATCH_MP INTERVAL_ABSV (INTERVAL_OF_TERM bprec b) in
let (_,f,_) = dest_interval (concl b_int) in
let thm1 = FLOAT_CONV f in
REWRITE_RULE[thm1] b_int)
with _ -> failwith "INTERVAL_OF_TERM : ABS"
end
(* treat twopow *)
else if (is_comb_of `twopow` tm) then
begin
try(
let (_,b) = dest_comb tm in
SPEC b INTERVAL_OF_TWOPOW
)
with _ -> failwith "INTERVAL_OF_TERM : TWOPOW"
end
(* treat addition *)
else if (can (dest_binop `(+.)`) tm) then
begin
try(
let (a,b) = dest_binop `(+.)` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_ADD (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : ADD"
end
(* treat subtraction *)
else if (can (dest_binop `(-.)`) tm) then
begin
try(
let (a,b) = dest_binop `(-.)` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_SUB (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : SUB"
end
(* treat multiplication *)
else if (can (dest_binop `( *. )`) tm) then
begin
try(
let (a,b) = dest_binop `( *. )` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let c_int = MATCH_MP INTERVAL_MUL (CONJ a_int b_int) in
let (_,f,ex) = dest_interval (concl c_int) in
let thm1 = FLOAT_CONV f and thm2 = FLOAT_CONV ex in
REWRITE_RULE[thm1;thm2] c_int)
with _ -> failwith "INTERVAL_OF_TERM : MUL"
end
(* treat division : instantiate INTERVAL_DIV *)
else if (can (dest_binop `( / )`) tm) then
begin
try(
let (a,b) = dest_binop `( / )` tm in
let a_int = INTERVAL_OF_TERM bprec a in
let b_int = INTERVAL_OF_TERM bprec b in
let (_,f,ex) = dest_interval (concl a_int) in
let (_,g,ey) = dest_interval (concl b_int) in
let f_num = dest_float f in
let ex_num = dest_float ex in
let g_num = dest_float g in
let ey_num = dest_float ey in
let h_num = round_rat bprec (f_num//g_num) in
let h = mk_float h_num in
let ez_rat = (ex_num +/ abs_num (f_num -/ (h_num*/ g_num))
+/ (abs_num h_num */ ey_num))//((abs_num g_num) -/ (ey_num)) in
let ez_num = round_rat bprec (ez_rat) in
let _ = assert((ez_num >=/ (Int 0))) in
let ez = mk_float ez_num in
let hyp1 = a_int in
let hyp2 = b_int in
let hyp3 = FLOAT_INEQ_CONV (mk_binop `(<.)` ey (mk_comb (`||.`,g))) in
let thm = SPECL [a;f;ex;b;g;ey;h;ez] INTERVAL_DIV in
let conj2 x = snd (dest_conj x) in
let hyp4t = (conj2 (conj2 (conj2 (fst(dest_imp (concl thm)))))) in
let hyp4 = FLOAT_INEQ_CONV hyp4t in
let hyp_all = end_itlist CONJ [hyp1;hyp2;hyp3;hyp4] in
MATCH_MP thm hyp_all)
with _ -> failwith "INTERVAL_OF_TERM :DIV"
end
(* treat sqrt : instantiate INTERVAL_SSQRT *)
else if (can (dest_unary `ssqrt`) tm) then
begin
try(
let x = dest_unary `ssqrt` tm in
let x_int = INTERVAL_OF_TERM bprec x in
let (_,f,ex) = dest_interval (concl x_int) in
let f_num = dest_float f in
let ex_num = dest_float ex in
let fd_num = f_num -/ ex_num in
let fe_f = Num.float_of_num fd_num in
let apprx_sqrt = Pervasives.sqrt fe_f in
(* put in heron's formula *)
let v_num1 = round_inward_float 25 (apprx_sqrt) in
let v_num = round_inward_rat bprec
(heron_sqrt 10 fd_num v_num1 ((Int 2) **/ (Int (-bprec-4)))) in
let u_num1 = round_inward_float 25
(Pervasives.sqrt (float_of_num f_num)) in
let u_num = round_inward_rat bprec
(heron_sqrt 10 f_num u_num1 ((Int 2) **/ (Int (-bprec-4)))) in
let ey_num = round_rat bprec (abs_num (f_num -/ (u_num */ u_num))) in
let ez_num = round_rat bprec ((ex_num +/ ey_num)//(u_num +/ v_num)) in
let (v,u) = (mk_float v_num,mk_float u_num) in
let (ey,ez) = (mk_float ey_num,mk_float ez_num) in
let thm = SPECL [x;f;ex;u;ey;ez;v] INTERVAL_SSQRT in
let conjhyp = fst (dest_imp (concl thm)) in
let [hyp6;hyp5;hyp4;hyp3;hyp2;hyp1] =
let rec break_conj c acc =
if (not(is_conj c)) then (c::acc) else
let (u,v) = dest_conj c in break_conj v (u::acc) in
(break_conj conjhyp []) in
let thm2 = prove(hyp2,REWRITE_TAC[interval] THEN
(CONV_TAC FLOAT_INEQ_CONV)) in
let thm3 = FLOAT_INEQ_CONV hyp3 in
let thm4 = FLOAT_INEQ_CONV hyp4 in
let float_tac = REWRITE_TAC[FLOAT_NN;FLOAT_POS;INT_NN;INT_NN_NEG;
INT_POS';INT_POS_NEG] THEN ARITH_TAC in
let thm5 = prove( hyp5,float_tac) in
let thm6 = prove( hyp6,float_tac) in
let ant = end_itlist CONJ[x_int;thm2;thm3;thm4;thm5;thm6] in
MATCH_MP thm ant
)
with _ -> failwith "INTERVAL_OF_TERM : SSQRT"
end
else failwith "INTERVAL_OF_TERM : case not installed";;
let real_ineq bprec tm =
let (t1,t2) = dest_binop `(<.)` tm in
let int1 = INTERVAL_OF_TERM bprec t1 in
let int2 = INTERVAL_OF_TERM bprec t2 in
INTERVAL_TO_LESS_CONV int1 int2;;
pop_priority();;