Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The NIST-recommended elliptic curve P-384, aka secp384r1. *) | |
(* ========================================================================= *) | |
needs "EC/weierstrass.ml";; | |
needs "EC/excluderoots.ml";; | |
needs "EC/computegroup.ml";; | |
add_curve weierstrass_curve;; | |
add_curveneg weierstrass_neg;; | |
add_curveadd weierstrass_add;; | |
(* ------------------------------------------------------------------------- *) | |
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *) | |
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *) | |
(* ------------------------------------------------------------------------- *) | |
let p_384 = new_definition `p_384 = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319`;; | |
let n_384 = new_definition `n_384 = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643`;; | |
let SEED_384 = new_definition `SEED_384 = 0xa335926aa319a27a1d00896a6773a4827acdac73`;; | |
let c_384 = new_definition `c_384 = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483`;; | |
let b_384 = new_definition `b_384 = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef`;; | |
let G_384 = new_definition `G_384 = SOME(&0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7:int,&0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f:int)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Primality of the field characteristic and group order. *) | |
(* ------------------------------------------------------------------------- *) | |
let P_384 = prove | |
(`p_384 = 2 EXP 384 - 2 EXP 128 - 2 EXP 96 + 2 EXP 32 - 1`, | |
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let PRIME_P384 = time prove | |
(`prime p_384`, | |
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "41"; "43"; "47"; | |
"59"; "61"; "67"; "73"; "79"; "97"; "131"; "139"; "157"; "181"; "211"; | |
"233"; "263"; "271"; "293"; "599"; "661"; "881"; "937"; "1033"; "1373"; | |
"1579"; "2213"; "3253"; "3517"; "6317"; "8389"; "21407"; "38557"; | |
"312289"; "336757"; "363557"; "568151"; "6051631"; "105957871"; | |
"246608641"; "513928823"; "532247449"; "2862218959"; "53448597593"; | |
"807145746439"; "44925942675193"; "1357291859799823621"; | |
"529709925838459440593"; "35581458644053887931343"; | |
"23964610537191310276190549303"; "862725979338887169942859774909"; | |
"20705423504133292078628634597817"; | |
"413244619895455989650825325680172591660047"; | |
"12397338596863679689524759770405177749801411"; | |
"19173790298027098165721053155794528970226934547887232785722672956982046098136719667167519737147526097"]);; | |
let PRIME_N384 = time prove | |
(`prime n_384`, | |
REWRITE_TAC[n_384] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "37"; "41"; | |
"43"; "47"; "53"; "59"; "73"; "79"; "89"; "97"; "107"; "113"; "149"; | |
"151"; "163"; "173"; "179"; "181"; "233"; "251"; "311"; "347"; "421"; | |
"491"; "653"; "659"; "881"; "1087"; "1117"; "1553"; "3739"; "4349"; | |
"8699"; "16979"; "34429"; "37447"; "64901"; "248431"; "330563"; "455737"; | |
"1276987"; "8463023"; "9863677"; "154950581"; "272109983"; "290064143"; | |
"228572385721"; "1436833069313"; "23314383343543"; "37344768852931"; | |
"55942463741690639"; "426632512014427833817"; "120699720968197491947347"; | |
"1124679999981664229965379347"; "1495199339761412565498084319"; | |
"17942392077136950785977011829"; | |
"1059392654943455286185473617842338478315215895509773412096307"; | |
"3055465788140352002733946906144561090641249606160407884365391979704929268480326390471"]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic sanity check on the (otherwise unused) c parameter. *) | |
(* ------------------------------------------------------------------------- *) | |
let SANITY_CHECK_384 = prove | |
(`(&b_384 pow 2 * &c_384:int == -- &27) (mod &p_384)`, | |
REWRITE_TAC[G_384; p_384; b_384; c_384] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of the curve group and proof of its key properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let p384_group = define | |
`p384_group = | |
weierstrass_group | |
(integer_mod_ring p_384, | |
ring_neg (integer_mod_ring p_384) (&3), | |
&b_384)`;; | |
let P384_GROUP = prove | |
(`group_carrier p384_group = | |
weierstrass_curve | |
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384) /\ | |
group_id p384_group = | |
NONE /\ | |
group_inv p384_group = | |
weierstrass_neg | |
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384) /\ | |
group_mul p384_group = | |
weierstrass_add | |
(integer_mod_ring p_384,ring_neg (integer_mod_ring p_384) (&3),&b_384)`, | |
REWRITE_TAC[p384_group] THEN | |
MATCH_MP_TAC WEIERSTRASS_GROUP THEN | |
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P384] THEN | |
REWRITE_TAC[p_384; b_384; weierstrass_nonsingular] THEN | |
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
add_ecgroup [p_384; b_384] P384_GROUP;; | |
let NO_ROOTS_P384 = prove | |
(`!x:int. ~((x pow 3 - &3 * x + &b_384 == &0) (mod &p_384))`, | |
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P384 [p_384;b_384]);; | |
let GENERATOR_IN_GROUP_CARRIER_384 = prove | |
(`G_384 IN group_carrier p384_group`, | |
REWRITE_TAC[G_384] THEN CONV_TAC ECGROUP_CARRIER_CONV);; | |
let GROUP_ELEMENT_ORDER_G384 = prove | |
(`group_element_order p384_group G_384 = n_384`, | |
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_384; | |
PRIME_N384] THEN | |
REWRITE_TAC[G_384; el 1 (CONJUNCTS P384_GROUP); option_DISTINCT] THEN | |
REWRITE_TAC[n_384] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN | |
REFL_TAC);; | |
let FINITE_GROUP_CARRIER_384 = prove | |
(`FINITE(group_carrier p384_group)`, | |
REWRITE_TAC[P384_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P384] THEN | |
REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let SIZE_P384_GROUP = prove | |
(`group_carrier p384_group HAS_SIZE n_384`, | |
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN | |
EXISTS_TAC `G_384:(int#int)option` THEN | |
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_384; GROUP_ELEMENT_ORDER_G384; | |
FINITE_GROUP_CARRIER_384] THEN | |
REWRITE_TAC[P384_GROUP] THEN CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhand o rand) | |
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN | |
REWRITE_TAC[PRIME_P384] THEN ANTS_TAC THENL | |
[REWRITE_TAC[p_384] THEN CONV_TAC NUM_REDUCE_CONV; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN | |
SIMP_TAC[CARD_INTEGER_MOD_RING; p_384; ARITH] THEN | |
REWRITE_TAC[n_384] THEN CONV_TAC NUM_REDUCE_CONV; | |
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN | |
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN | |
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_384; PAIR_EQ] THEN | |
CONV_TAC INT_REDUCE_CONV] THEN | |
ASM_CASES_TAC `y:int = &0` THENL | |
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P384) THEN | |
REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; p_384; INT_REM_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH | |
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN | |
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN | |
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE | |
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE | |
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN | |
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; | |
let GENERATED_P384_GROUP = prove | |
(`subgroup_generated p384_group {G_384} = p384_group`, | |
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; | |
GENERATOR_IN_GROUP_CARRIER_384; | |
FINITE_GROUP_CARRIER_384] THEN | |
REWRITE_TAC[GROUP_ELEMENT_ORDER_G384; | |
REWRITE_RULE[HAS_SIZE] SIZE_P384_GROUP]);; | |
let CYCLIC_P384_GROUP = prove | |
(`cyclic_group p384_group`, | |
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P384_GROUP]);; | |
let ABELIAN_P384_GROUP = prove | |
(`abelian_group p384_group`, | |
MESON_TAC[CYCLIC_P384_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);; | |