Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : generalize.ml *) | |
(* DESCRIPTION : Generalization. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 21st June 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 12th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : July 2009 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* is_generalizable : string list -> term -> bool *) | |
(* *) | |
(* Function to determine whether or not a term has the correct properties to *) | |
(* be generalizable. It takes a list of accessor function names as its first *) | |
(* argument. This is for efficiency. It could compute them itself, but if an *) | |
(* external function is going to call is_generalizable many times it is *) | |
(* better for the external function to compute the list of accessors. *) | |
(*----------------------------------------------------------------------------*) | |
let is_generalizable accessors tm = | |
not ((is_var tm) || | |
(is_explicit_value_template tm) || | |
(is_eq tm) || | |
(try(mem ((fst o dest_const o fst o strip_comb) tm) accessors) | |
with Failure _ -> false));; | |
(*----------------------------------------------------------------------------*) | |
(* generalizable_subterms : string list -> term -> term list *) | |
(* *) | |
(* Computes the generalizable subterms of a literal, given a list of accessor *) | |
(* function names. *) | |
(*----------------------------------------------------------------------------*) | |
let generalizable_subterms accessors tm = | |
try (setify (find_bm_terms (is_generalizable accessors) tm) | |
) with Failure _ -> failwith "generalizable_subterms";; | |
(*----------------------------------------------------------------------------*) | |
(* minimal_common_subterms : term list -> term list *) | |
(* *) | |
(* Given a list of terms, this function removes from the list any term that *) | |
(* has one of the other terms as a proper subterm. It also eliminates any *) | |
(* duplicates. *) | |
(*----------------------------------------------------------------------------*) | |
let minimal_common_subterms tml = | |
let tml' = setify tml | |
in filter | |
(fun tm -> not (exists (fun tm' -> (is_subterm tm' tm) && (not (tm' = tm))) tml')) | |
tml';; | |
(*----------------------------------------------------------------------------*) | |
(* to_be_generalized : term -> term list -> term -> bool *) | |
(* *) | |
(* This function decides whether a subterm of a literal should be generalized.*) | |
(* It takes a literal, a list of other literals, and a subterm of the literal *) | |
(* as arguments. The subterm should be generalized if it occurs in one of the *) | |
(* other literals, or if the literal is an equality and it occurs on both *) | |
(* sides, or if the literal is the negation of an equality and the subterm *) | |
(* occurs on both sides. *) | |
(*----------------------------------------------------------------------------*) | |
let to_be_generalized tm tml gen = | |
try (let (l,r) = dest_eq (dest_neg tm) | |
in if ((is_subterm gen l) && (is_subterm gen r)) | |
then true | |
else failwith "") with Failure _ -> | |
try (let (l,r) = dest_eq tm | |
in if ((is_subterm gen l) && (is_subterm gen r)) | |
then true | |
else failwith "") with Failure _ -> | |
(exists (is_subterm gen) tml);; | |
(*----------------------------------------------------------------------------*) | |
(* terms_to_be_generalized : term -> term list *) | |
(* *) | |
(* Given a clause, this function determines the subterms of the clause that *) | |
(* are to be generalized. For each literal, the function computes the *) | |
(* generalizable subterms. It then filters out those subterms that are not to *) | |
(* be generalized. It only looks at the remaining literals when doing this, *) | |
(* not at those already processed. This is legitimate because if the subterm *) | |
(* occurs in a previous literal, it would have already been added to the main *) | |
(* list of subterms that should be generalized. Before returning this main *) | |
(* list, the function removes any non-minimal common subterms. This operation *) | |
(* also removes any duplicates. *) | |
(*----------------------------------------------------------------------------*) | |
let terms_to_be_generalized tm = | |
let accessors = (all_accessors ()) | |
(* @ (all_constructors()) *) | |
in let rec terms_to_be_generalized' tml = | |
if (tml = []) | |
then [] | |
else let h::t = tml | |
in let gens = generalizable_subterms accessors h | |
in let gens' = filter (to_be_generalized h t) gens | |
in gens' @ (terms_to_be_generalized' t) | |
in minimal_common_subterms (terms_to_be_generalized' (disj_list tm));; | |
(*----------------------------------------------------------------------------*) | |
(* distinct_var : term list -> type -> term *) | |
(* *) | |
(* Function to generate a sensibly-named variable of a specified type. *) | |
(* Variables that the new variable must be distinct from can be specified in *) | |
(* the first argument. The new variable will be named according to the first *) | |
(* letter of the top-level constructor in the specified type, or if the type *) | |
(* is a simple polymorphic type, the name `x' is used. The actual name will *) | |
(* be this name followed by zero or more apostrophes. *) | |
(*----------------------------------------------------------------------------*) | |
let distinct_var vars ty = | |
let letter = try((hd o explode o fst o dest_type) ty) with Failure _ -> "x" | |
in variant vars (mk_var (letter,ty));; | |
(*----------------------------------------------------------------------------*) | |
(* distinct_vars : term list -> type list -> term list *) | |
(* *) | |
(* Generates new variables using `distinct_var' for each of the types in the *) | |
(* given list. The function ensures that each of the new variables are *) | |
(* distinct from each other, as well as from the argument list of variables. *) | |
(*----------------------------------------------------------------------------*) | |
let rec distinct_vars vars tyl = | |
if (tyl = []) | |
then [] | |
else let var = distinct_var vars (hd tyl) | |
in var::(distinct_vars (var::vars) (tl tyl));; | |
(*----------------------------------------------------------------------------*) | |
(* apply_gen_lemma : term -> thm -> thm *) | |
(* *) | |
(* Given a term to be generalized and a generalization lemma, this function *) | |
(* tries to apply the lemma to the term. The result, if successful, is a *) | |
(* specialization of the lemma. *) | |
(* *) | |
(* The function checks that the lemma has no hypotheses, and then extracts a *) | |
(* list of subterms of the conclusion that match the given term and contain *) | |
(* all the free variables of the conclusion. The second condition prevents *) | |
(* new variables being introduced into the goal clause. The ordering of the *) | |
(* subterms in the list is dependent on the implementation of `find_terms', *) | |
(* but probably doesn't matter anyway, because the function tries each of *) | |
(* them until it finds one that is acceptable. *) | |
(* *) | |
(* Each subterm is tried as follows. A matching between the subterm and the *) | |
(* term to be generalized is obtained. This is used to instantiate the lemma. *) | |
(* The function then checks that when the conclusion of this new theorem is *) | |
(* generalized (by replacing the term to be generalized with a variable), the *) | |
(* function symbol of the term to be generalized no longer appears in it. *) | |
(*----------------------------------------------------------------------------*) | |
let apply_gen_lemma tm th = | |
try | |
(let apply_gen_lemma' subtm = | |
(let (_,tm_bind,ty_bind) = term_match [] subtm tm | |
in let (insts,vars) = List.split tm_bind | |
in let th' = ((SPECL insts) o (GENL vars) o (INST_TYPE ty_bind)) th | |
in let gen_conc = subst [(genvar (type_of tm),tm)] (concl th') | |
and f = fst (strip_comb tm) | |
in if (is_subterm f gen_conc) | |
then failwith "" | |
else th') | |
in let ([],conc) = dest_thm th | |
in let conc_vars = frees conc | |
in let good_subterm subtm = | |
((can (term_match [] subtm) tm) && ((subtract conc_vars (frees subtm)) = [])) | |
in let subtms = rev (find_terms good_subterm conc) | |
in tryfind apply_gen_lemma' subtms | |
) with Failure _ -> failwith "apply_gen_lemma";; | |
(*----------------------------------------------------------------------------*) | |
(* applicable_gen_lemmas : term list -> thm list *) | |
(* *) | |
(* Computes instantiations of generalization lemmas applicable to a list of *) | |
(* terms, the terms to be generalized. *) | |
(*----------------------------------------------------------------------------*) | |
let applicable_gen_lemmas tml = | |
flat (map (fun tm -> mapfilter (apply_gen_lemma tm) (gen_lemmas ())) tml);; | |
(*----------------------------------------------------------------------------*) | |
(* generalize_heuristic : (term # bool) -> ((term # bool) list # proof) *) | |
(* *) | |
(* Generalization heuristic. *) | |
(* *) | |
(* This function first computes the terms to be generalized in a clause. It *) | |
(* fails if there are none. It then obtains a list of instantiated *) | |
(* generalization lemmas for these terms. Each of these lemmas is transformed *) | |
(* to a theorem of the form |- x = F. If the original lemma was a negation, *) | |
(* x is the argument of the negation. Otherwise x is the negation of the *) | |
(* original lemma. *) | |
(* *) | |
(* The negated lemmas are added to the clause, and the result is generalized *) | |
(* by replacing each of the terms to be generalized by new distinct *) | |
(* variables. This generalized clause is returned together with a proof of *) | |
(* the original clause from it. *) | |
(* *) | |
(* The proof begins by specializing the variables that were used to replace *) | |
(* the generalized terms. The theorem is then of the form: *) | |
(* *) | |
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause (1) *) | |
(* *) | |
(* We have a theorem |- lemmai = F for each i between 1 and n. Consider the *) | |
(* first of these. From it, the following theorem can be obtained: *) | |
(* *) | |
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *) | |
(* F \/ lemma2 \/ ... \/ lemman \/ original_clause *) | |
(* *) | |
(* Simplifying using |- F \/ x = x, this gives: *) | |
(* *) | |
(* |- lemma1 \/ lemma2 \/ ... \/ lemman \/ original_clause = *) | |
(* lemma2 \/ ... \/ lemman \/ original_clause *) | |
(* *) | |
(* From this theorem and (1), we obtain: *) | |
(* *) | |
(* |- lemma2 \/ ... \/ lemman \/ original_clause *) | |
(* *) | |
(* Having repeated this process for each of the lemmas, the proof eventually *) | |
(* returns a theorem for the original clause, i.e. |- original_clause. *) | |
(*----------------------------------------------------------------------------*) | |
let generalize_heuristic (tm,(ind:bool)) = | |
try | |
(let NEGATE th = | |
let ([],tm) = dest_thm th | |
in if (is_neg tm) | |
then EQF_INTRO th | |
else EQF_INTRO | |
(CONV_RULE | |
(REWR_CONV | |
(SYM (SPEC_ALL (hd (CONJUNCTS NOT_CLAUSES))))) th) | |
and ELIM_LEMMA lemma th = | |
let rest = snd (dest_disj (concl th)) | |
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) | |
(AP_THM (AP_TERM `(\/)` lemma) rest)) th | |
in let gen_terms = check (fun l -> not (l = [])) (terms_to_be_generalized tm) | |
in let lemmas = map NEGATE (applicable_gen_lemmas gen_terms) | |
in let tm' = itlist (curry mk_disj) (map (lhs o concl) lemmas) tm | |
in let new_vars = distinct_vars (frees tm') (map type_of gen_terms) | |
in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm' | |
in let countercheck = try counter_check 5 tm'' with Failure _ -> | |
warn true "Could not generate counter example!" ; true | |
in if (countercheck = true) then let proof th'' = | |
let th' = SPECL gen_terms (GENL new_vars th'') | |
in rev_itlist ELIM_LEMMA lemmas th' | |
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic" (proof o hd) [tm''])) | |
else failwith "Counter example failure!" | |
) with Failure _ -> failwith "generalize_heuristic";; | |
(* Implementation of Aderhold's Generalization techniques: *) | |
let is_constructor_eq constructor v tm = | |
try ( | |
let (a,b) = dest_eq tm | |
in let cand_c = ( if ( v = a ) then b | |
else if ( v = b ) then a | |
else failwith "" ) | |
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c | |
in constructor = cand_name | |
(* then cand_name else failwith ""*) | |
) with Failure _ -> false;; | |
let is_constructor_neq constructor v tm = | |
try ( | |
let tm' = dest_neg tm | |
in let (a,b) = dest_eq tm' | |
in let cand_c = ( if ( v = a ) then b | |
else if ( v = b ) then a | |
else failwith "" ) | |
in let cand_name = (fst o dest_const o fst o strip_comb) cand_c | |
in constructor = cand_name | |
) with Failure _ -> false;; | |
let infer_constructor v tm = | |
try ( | |
print_term v;print_string " XXX ";print_term tm;print_newline(); | |
let v_ty = (fst o dest_type) (type_of v) | |
in let clist = map fst3 ((shell_constructors o sys_shell_info) v_ty) | |
in let conjs = conj_list tm | |
in let check_constructor_eq c v tms = | |
let res = map (is_constructor_eq c v) tms | |
in if (mem true res) then true | |
else false | |
in let check_constructor_neq c v tms = | |
let res = map (is_constructor_neq c v) tms | |
in if (mem true res) then true | |
else false | |
in let check_constructor c all_constr v tms = | |
if (check_constructor_eq c v tms) then true | |
else let constrs = subtract all_constr [c] | |
in let res = map (fun c -> check_constructor_neq c v tms) constrs | |
in if (mem false res) then false | |
else true | |
in let res = map (fun c -> check_constructor c clist v conjs) clist | |
in let reslist = List.combine res clist | |
in assoc true reslist | |
) with Failure _ -> failwith "infer_constructor";; | |
let get_rec_pos_of_fun f = | |
try ( | |
(fst o get_def o fst o dest_const) f | |
) with Failure _ -> 0;; | |
let rec is_in_rec_pos subtm tm = | |
let (op,args) = strip_comb tm | |
in try ( | |
let rec_argn = get_rec_pos_of_fun op | |
in if ( (el (rec_argn - 1) args) = subtm ) | |
then true | |
else failwith "" | |
) with Failure _ -> mem true (map (is_in_rec_pos subtm) args) ;; | |
let is_var_in_rec_pos v tm = | |
try ( | |
if (not (is_var v)) then false | |
else if (not (mem v (frees tm))) then false | |
else is_in_rec_pos v tm | |
) with Failure _ -> false;; | |
let eliminateSelectors tm = | |
try ( | |
let vars = frees tm | |
in let vars' = filter (not o (fun v -> is_var_in_rec_pos v tm )) vars | |
in if (vars' = []) then tm | |
else let rec find_candidate vars tm = | |
if ( vars = [] ) then failwith "find_candidate" | |
else let var = (hd vars) in try ( (var,infer_constructor var tm) ) | |
with Failure _ -> find_candidate (tl vars) tm | |
in let (var,constr) = find_candidate vars' tm | |
in let v_ty = (fst o dest_type) (type_of var) | |
in let s_info = sys_shell_info v_ty | |
in let new_vars = distinct_vars vars (shell_constructor_arg_types constr s_info) | |
in let new_subtm = list_mk_icomb constr new_vars | |
in let new_tm = subst [new_subtm,var] tm | |
in (snd o dest_eq o concl) (REWRITE_CONV (map snd (shell_constructor_accessors constr s_info)) new_tm) | |
) with Failure _ -> failwith "eliminateSelectors";; | |
let all_variables = | |
let rec vars(acc,tm) = | |
if is_var tm then tm::acc | |
else if is_const tm then acc | |
else if is_abs tm then | |
let v,bod = dest_abs tm in | |
vars(v::acc,bod) | |
else | |
let l,r = dest_comb tm in | |
vars(vars(acc,r),l) in | |
fun tm -> vars([],tm);; | |
let all_equations = | |
let rec eqs(acc,tm) = | |
if is_eq tm then tm::acc | |
else if is_var tm then acc | |
else if is_const tm then acc | |
else if is_abs tm then | |
let v,bod = dest_abs tm in | |
eqs(acc,bod) | |
else | |
let l,r = dest_comb tm in | |
eqs(eqs(acc,r),l) in | |
fun tm -> eqs([],tm);; | |
let rec contains_any tm args = | |
if is_var tm then false | |
else if is_numeral tm then false | |
else if is_const tm then mem ((fst o dest_const) tm) args | |
else if is_abs tm then | |
let v,bod = dest_abs tm in | |
contains_any v args | |
else | |
let l,r = dest_comb tm in | |
(contains_any l args) || (contains_any r args);; | |
let is_rec_type tm = try( mem ((fst o dest_type o type_of) tm) (shells()) ) with Failure _ -> false;; | |
let is_generalizable_subterm bad tm = | |
(is_rec_type tm) && | |
not ( (is_var tm) || | |
(is_const tm) || | |
(is_numeral tm) || | |
(contains_any tm bad) );; | |
(*----------------------------------------------------------------------------*) | |
(* A set S of terms is called a suitable proposal for some formula phi if each*) | |
(* t' in S is a generalizable subterm of phi and if there is some t' in S that*) | |
(* occurs at least twice in phi. *) | |
(* Here gens is assumed to be the generalizable subterms of phi as found by *) | |
(* find_bm_terms. This means that it will contain t' as many times as it was *) | |
(* found in phi. Therefore, the occurences of t' in gens are equivalent to its*) | |
(* occurences in phi. *) | |
(*----------------------------------------------------------------------------*) | |
let is_suitable_proposal s phi gens = | |
( forall (fun tm -> mem tm gens) s ) && (exists (fun tm -> lcount tm gens > 1) s);; | |
let checksuitableeq = ref false;; (* equation criterion *) | |
let newisgen = ref true;; (* Use Aderhold's (true) or Boulton's (false) is_generalizable for terms *) | |
let is_eq_suitable t eq = | |
if (not !checksuitableeq) then true | |
else if (not (is_eq eq)) then false | |
else let l,r = dest_eq eq in | |
if ((is_subterm t r) && (is_subterm t l)) then true | |
else length(find_bm_terms ((=) t) eq) > 1;; | |
let generateProposals tm phi = | |
let rec generateProposals' bad tm phi gens = | |
let p = [] in | |
if (is_eq tm) | |
then let (t1,t2) = dest_eq tm | |
in let p1 = (generateProposals' bad t1 phi gens) | |
in let p1' = if (is_suitable_proposal [t1] phi gens) then p1@[[t1]] else p1 | |
in let p = p @ filter (exists (fun t -> is_eq_suitable t tm)) p1' | |
in let p2 = (generateProposals' bad t2 phi gens) | |
in let p2' = if (is_suitable_proposal [t2] phi gens) then p2@[[t2]] else p2 | |
in p @ filter (exists (fun t -> is_eq_suitable t tm)) p2' | |
else if (is_comb tm) | |
then let (op,args) = strip_comb tm | |
in let recpos = get_rec_pos_of_fun op | |
in let s = if (recpos > 0) then [el (recpos-1) args] else [] | |
in let p = if (is_suitable_proposal s phi gens) then p@[s] else p | |
in p @ flat (map (fun tm -> generateProposals' bad tm phi gens) args) | |
else p | |
in let bad = (all_accessors()) @ (all_constructors()) | |
in let gens = if (!newisgen) then find_bm_terms (is_generalizable_subterm bad) phi | |
else find_bm_terms (is_generalizable bad) phi | |
in generateProposals' bad tm phi gens;; | |
let proposal_induction_test s phi = | |
let newvars = distinct_vars (frees phi) (map (type_of) s) | |
in let subs = List.combine newvars s | |
in let newterm = subst subs phi | |
in let (unfl,fl) = possible_inductions newterm | |
in if (exists (fun v -> (mem v (unfl@fl)) ) newvars ) then true else false;; | |
let get_proposal_term_occs s phi = | |
let gens = find_bm_terms (fun tm -> true) phi | |
in let scount = map (fun tm -> lcount tm gens) s | |
in itlist (+) scount 0;; | |
let organizeProposals s phi = | |
let stest = map (fun prop -> (prop,proposal_induction_test prop phi)) s | |
in let indok = filter (((=) true) o snd) stest | |
in let s' = if (indok = []) then (proof_print_string_l "Weak Generalization" (map fst stest)) else (map fst indok) | |
in if (length s' = 1) then hd s' | |
else let scounted = (rev o sort_on_snd) (map (fun prop -> (prop,lcount prop s')) s') | |
in let smax = (snd o hd) scounted | |
in let s'' = map fst (filter (((=) smax) o snd) scounted) | |
in if (length s'' = 1) then hd s'' | |
else let soccscounted = (rev o sort_on_snd) (map (fun prop -> (prop,get_proposal_term_occs prop phi)) s'') | |
in (fst o hd) soccscounted;; | |
let generalizeCommonSubterms tm = | |
let props = generateProposals tm tm | |
in if (props = []) then failwith "" | |
else let s = organizeProposals props tm | |
in let newvars = distinct_vars (frees tm) (map type_of s) | |
in let varcomb = List.combine newvars s | |
in (subst varcomb tm,varcomb);; | |
let rec separate f v v' allrpos tm = | |
let replace tm v v' rpos = | |
if (not rpos) then tm | |
else if (tm = v) then v' | |
else (separate f v v' allrpos tm) | |
in if (is_comb tm) then ( | |
let (op,args) = strip_comb tm | |
in let recpos = get_rec_pos_of_fun op | |
in if ((allrpos) && not (op = `(=)`)) | |
then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' ((i = recpos) || (recpos = 0))) (number_list args)))) | |
else if (op = `(=)`) | |
then (list_mk_comb(op,[replace (hd args) v v' true;replace ((hd o tl) args) v v' true])) | |
else if (op = f) | |
then (list_mk_comb (op,(map (fun (t,i) -> replace t v v' (i = recpos)) (number_list args)))) | |
else (list_mk_comb (op,(map (separate f v v' allrpos) args))) | |
) | |
else tm;; | |
let rec generalized_apart_successfully v v' tm tm' = | |
if (tm' = v') then true | |
else if (is_eq tm) then ( let (tm1,tm2) = dest_eq tm | |
in let (tm1',tm2') = dest_eq tm' | |
in (generalized_apart_successfully v v' tm1 tm1') | |
&& (generalized_apart_successfully v v' tm2 tm2') ) | |
else ( let av = all_variables tm | |
in let av' = all_variables tm' | |
in let varsub = List.combine av av' | |
in ((mem (v,v') varsub) && (mem v av')) );; | |
let useful_apart_generalization v v' tm gen = | |
let eqssub = List.combine (all_equations tm) (all_equations gen) | |
in let eqsok = forall (fun (x,y) -> (x=y) || (generalized_apart_successfully v v' x y)) eqssub | |
in let countercheck = try counter_check 5 gen with Failure s -> | |
warn true ("Could not generate counter example: " ^ s) ; true | |
in eqsok && (generalized_apart_successfully v v' tm gen) && countercheck;; | |
let generalize_apart tm = | |
let is_fun tm = (try( mem ((fst o dest_const o fst o strip_comb) tm) (defs_names ()) ) with Failure _ -> false) | |
in let fs = find_bm_terms is_fun tm | |
in let dfs = map strip_comb fs | |
in let find_f (op,args) dfs = ( | |
let r = get_rec_pos_of_fun op | |
in let arg_filter args args' = | |
(let v = el (r-1) args | |
in (is_var v) && (mem v (snd (remove_el r args')))) | |
in let match_filter (op',args') = | |
((op' = op) && (arg_filter args args')) | |
in can (find match_filter) dfs ) | |
in let (f,args) = try( find (fun (op,args) -> find_f (op,args) dfs) dfs ) with Failure _ -> failwith "" | |
in let v = el ((get_rec_pos_of_fun f) -1) args | |
in let v' = distinct_var (frees tm) (type_of v) | |
(*distinct_var (flat (map frees args)) (type_of v)*) | |
in let gen = separate f v v' false tm | |
in if (useful_apart_generalization v v' tm gen) then (gen,[v',v]) | |
else let pcs = map fst dfs | |
in let restpcs = subtract pcs [f] | |
in let recposs = map get_rec_pos_of_fun restpcs | |
in let recpos = try (find ((<) 0) recposs) with Failure _ -> 0 | |
in let gen = if (forall (fun x -> (x = 0) || (x = recpos)) recposs) | |
then separate f v v' true tm | |
else failwith "not same recpos for all functions" | |
in if (useful_apart_generalization v v' tm gen) then (gen,[v',v]) | |
else failwith "failed";; | |
(*----------------------------------------------------------------------------*) | |
(* Reference flag to check if a term has already been generalized so as to *) | |
(* avoid multiple proposal generalization because of the waterfall loop. *) | |
(*----------------------------------------------------------------------------*) | |
let checkgen = ref true;; | |
let generalize_heuristic_aderhold (tm,(ind:bool)) = | |
if (mem tm !my_gen_terms && !checkgen) then failwith "" | |
else | |
try | |
(let ELIM_LEMMA lemma th = | |
let rest = snd (dest_disj (concl th)) | |
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) | |
(AP_THM (AP_TERM `(\/)` lemma) rest)) th | |
in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[]) | |
in let (new_ap_vars,gen_ap_terms) = List.split subs | |
in let (tm'',subs) = try( generalizeCommonSubterms tm' ) with Failure _ -> (tm',[]) | |
in if (tm = tm'') then failwith "" | |
else let (new_vars,gen_terms) = List.split subs | |
in let lemmas = [] | |
in let countercheck = try counter_check 5 tm'' with Failure s -> | |
warn true ("Could not generate counter example: " ^ s) ; true | |
in if (countercheck = true) then let proof th'' = | |
let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o | |
(SPECL gen_terms) o (GENL new_vars)) th'' | |
in rev_itlist ELIM_LEMMA lemmas th' | |
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_aderhold" (proof o hd) [tm''])) | |
else failwith "Counter example failure!" | |
) with Failure _ -> failwith "generalize_heuristic";; | |
let generalize_heuristic_ext (tm,(ind:bool)) = | |
if (mem tm !my_gen_terms && !checkgen) then failwith "" | |
else | |
try | |
(let ELIM_LEMMA lemma th = | |
let rest = snd (dest_disj (concl th)) | |
in EQ_MP (CONV_RULE (RAND_CONV (REWR_CONV F_OR)) | |
(AP_THM (AP_TERM `(\/)` lemma) rest)) th | |
in let lemmas = [] | |
in let (tm',subs) = try( generalize_apart tm ) with Failure _ -> (tm,[]) | |
in let (new_ap_vars,gen_ap_terms) = List.split subs | |
in let gen_terms = terms_to_be_generalized tm' | |
in let _ = check (fun l -> not (l = [])) (gen_ap_terms@gen_terms) | |
in let new_vars = distinct_vars (frees tm') (map type_of gen_terms) | |
in let tm'' = subst (lcombinep (new_vars,gen_terms)) tm' | |
in let countercheck = try counter_check 5 tm'' with Failure _ -> | |
warn true "Could not generate counter example!" ; true | |
in if (countercheck = true) then let proof th'' = | |
let th' = ((SPECL gen_ap_terms) o (GENL new_ap_vars) o | |
(SPECL gen_terms) o (GENL new_vars)) th'' | |
in rev_itlist ELIM_LEMMA lemmas th' | |
in (proof_print_string_l "-> Generalize Heuristic"() ; my_gen_terms := tm''::!my_gen_terms ; ([(tm'',ind)],apply_fproof "generalize_heuristic_ext" (proof o hd) [tm''])) | |
else failwith "Counter example failure!" | |
) with Failure _ -> failwith "generalize_heuristic";; | |