Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Isosceles triangle theorem. *) | |
(* ========================================================================= *) | |
needs "Multivariate/geom.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* The theorem, according to Wikipedia. *) | |
(* ------------------------------------------------------------------------- *) | |
let ISOSCELES_TRIANGLE_THEOREM = prove | |
(`!A B C:real^N. dist(A,C) = dist(B,C) ==> angle(C,A,B) = angle(A,B,C)`, | |
MP_TAC(INST_TYPE [`:N`,`:M`] CONGRUENT_TRIANGLES_SSS) THEN | |
MESON_TAC[DIST_SYM; ANGLE_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The obvious converse. *) | |
(* ------------------------------------------------------------------------- *) | |
let ISOSCELES_TRIANGLE_CONVERSE = prove | |
(`!A B C:real^N. angle(C,A,B) = angle(A,B,C) /\ ~(collinear {A,B,C}) | |
==> dist(A,C) = dist(B,C)`, | |
MP_TAC(INST_TYPE [`:N`,`:M`] CONGRUENT_TRIANGLES_ASA_FULL) THEN | |
MESON_TAC[DIST_SYM; ANGLE_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some other equivalents sometimes called the ITT (see the Web page *) | |
(* http://www.sonoma.edu/users/w/wilsonst/Courses/Math_150/Theorems/itt.html *) | |
(* ------------------------------------------------------------------------- *) | |
let lemma = prove | |
(`!A B C D:real^N. | |
between D (A,B) | |
==> (orthogonal (A - B) (C - D) <=> | |
angle(A,D,C) = pi / &2 /\ angle(B,D,C) = pi / &2)`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `D:real^N = A` THENL | |
[DISCH_TAC THEN ASM_SIMP_TAC[ANGLE_REFL] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM ORTHOGONAL_LNEG] THEN | |
REWRITE_TAC[VECTOR_NEG_SUB; ORTHOGONAL_VECTOR_ANGLE; angle]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `D:real^N = B` THENL | |
[DISCH_TAC THEN ASM_SIMP_TAC[ANGLE_REFL] THEN | |
REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE; angle]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`; `C:real^N`] | |
ANGLES_ALONG_LINE) THEN | |
ASM_REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`x = z ==> x + y = p ==> (z = p / &2 <=> x = p / &2 /\ y = p / &2)`) THEN | |
REWRITE_TAC[angle] THEN MATCH_MP_TAC VECTOR_ANGLE_EQ_0_RIGHT THEN | |
ONCE_REWRITE_TAC[GSYM VECTOR_ANGLE_NEG2] THEN | |
REWRITE_TAC[VECTOR_NEG_SUB; GSYM angle] THEN | |
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);; | |
let ISOSCELES_TRIANGLE_1 = prove | |
(`!A B C D:real^N. | |
dist(A,C) = dist(B,C) /\ D = midpoint(A,B) | |
==> angle(A,C,D) = angle(B,C,D)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`A:real^N`; `D:real^N`; `C:real^N`; | |
`B:real^N`; `D:real^N`; `C:real^N`] | |
CONGRUENT_TRIANGLES_SSS_FULL) THEN | |
ASM_REWRITE_TAC[DIST_MIDPOINT] THEN ASM_MESON_TAC[DIST_SYM; ANGLE_SYM]);; | |
let ISOSCELES_TRIANGLE_2 = prove | |
(`!A B C D:real^N. | |
between D (A,B) /\ | |
dist(A,C) = dist(B,C) /\ angle(A,C,D) = angle(B,C,D) | |
==> orthogonal (A - B) (C - D)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ISOSCELES_TRIANGLE_THEOREM) THEN | |
MP_TAC(ISPECL [`D:real^N`; `C:real^N`; `A:real^N`; | |
`D:real^N`; `C:real^N`; `B:real^N`] | |
CONGRUENT_TRIANGLES_SAS_FULL) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[DIST_SYM; ANGLE_SYM]; ALL_TAC] THEN | |
ASM_CASES_TAC `D:real^N = B` THEN | |
ASM_SIMP_TAC[DIST_EQ_0; DIST_REFL; VECTOR_SUB_REFL; ORTHOGONAL_0] THEN | |
ASM_CASES_TAC `D:real^N = A` THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN | |
ASM_SIMP_TAC[lemma] THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`; `C:real^N`] | |
ANGLES_ALONG_LINE) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let ISOSCELES_TRIANGLE_3 = prove | |
(`!A B C D:real^N. | |
between D (A,B) /\ | |
dist(A,C) = dist(B,C) /\ orthogonal (A - B) (C - D) | |
==> D = midpoint(A,B)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = B` THEN | |
ASM_SIMP_TAC[BETWEEN_REFL_EQ; MIDPOINT_REFL] THEN | |
ASM_CASES_TAC `D:real^N = A` THENL | |
[ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] PYTHAGORAS) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[ORTHOGONAL_LNEG; VECTOR_NEG_SUB]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[GSYM dist] THEN | |
ASM_REWRITE_TAC[REAL_RING `a = x pow 2 + a <=> x = &0`; DIST_EQ_0]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `D:real^N = B` THENL | |
[ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] PYTHAGORAS) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[ORTHOGONAL_LNEG; VECTOR_NEG_SUB]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_REWRITE_TAC[GSYM dist] THEN | |
ASM_REWRITE_TAC[REAL_RING `a = x pow 2 + a <=> x = &0`; DIST_EQ_0]; | |
ALL_TAC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_SIMP_TAC[lemma; MIDPOINT_COLLINEAR; BETWEEN_IMP_COLLINEAR] THEN | |
STRIP_TAC THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP ISOSCELES_TRIANGLE_THEOREM) THEN | |
MP_TAC(ISPECL | |
[`A:real^N`; `C:real^N`; `D:real^N`; | |
`B:real^N`; `C:real^N`; `D:real^N`] | |
CONGRUENT_TRIANGLES_SAS) THEN | |
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN | |
ASM_REWRITE_TAC[] THEN | |
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN | |
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`a:real = a' /\ b = b' | |
==> a + x + b = p ==> a' + x' + b' = p ==> x' = x`) THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[ANGLE_SYM]] THEN | |
CONV_TAC SYM_CONV THEN | |
UNDISCH_TAC `angle(C:real^N,A,B) = angle (A,B,C)` THEN | |
MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL | |
[MATCH_MP_TAC ANGLE_EQ_0_LEFT; | |
GEN_REWRITE_TAC RAND_CONV [ANGLE_SYM] THEN | |
MATCH_MP_TAC ANGLE_EQ_0_RIGHT] THEN | |
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the converses to those as well. *) | |
(* ------------------------------------------------------------------------- *) | |
let ISOSCELES_TRIANGLE_4 = prove | |
(`!A B C D:real^N. | |
D = midpoint(A,B) /\ orthogonal (A - B) (C - D) | |
==> dist(A,C) = dist(B,C)`, | |
REPEAT GEN_TAC THEN ASM_SIMP_TAC[IMP_CONJ; BETWEEN_MIDPOINT; lemma] THEN | |
DISCH_THEN(ASSUME_TAC o SYM) THEN ASM_REWRITE_TAC[] THEN | |
REPEAT DISCH_TAC THEN MATCH_MP_TAC CONGRUENT_TRIANGLES_SAS THEN | |
MAP_EVERY EXISTS_TAC [`D:real^N`; `D:real^N`] THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "D" THEN REWRITE_TAC[DIST_MIDPOINT]);; | |
let ISOSCELES_TRIANGLE_5 = prove | |
(`!A B C D:real^N. | |
~collinear{D,C,A} /\ between D (A,B) /\ | |
angle(A,C,D) = angle(B,C,D) /\ orthogonal (A - B) (C - D) | |
==> dist(A,C) = dist(B,C)`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `C:real^N = D` THENL | |
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2]; ALL_TAC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
UNDISCH_TAC `~(C:real^N = D)` THEN | |
REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN | |
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `C:real^N = A` THENL | |
[DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[ANGLE_REFL] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_ANGLE]) THEN | |
ASM_CASES_TAC `D:real^N = A` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `D:real^N = B` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ARITH `x / &2 = &0 <=> x = &0`; | |
PI_NZ] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN | |
MP_TAC PI_NZ THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `C:real^N = B` THENL | |
[DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[ANGLE_REFL] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_ANGLE]) THEN | |
ASM_CASES_TAC `D:real^N = B` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `D:real^N = A` THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ARITH `&0 = x / &2 <=> x = &0`; | |
PI_NZ] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN | |
MP_TAC PI_NZ THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[IMP_CONJ; lemma] THEN | |
REPEAT DISCH_TAC THEN MP_TAC( | |
ISPECL [`D:real^N`; `C:real^N`; `A:real^N`; | |
`D:real^N`; `C:real^N`; `B:real^N`] | |
CONGRUENT_TRIANGLES_ASA_FULL) THEN | |
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN | |
ONCE_REWRITE_TAC[ANGLE_SYM] THEN ASM_REWRITE_TAC[]);; | |
let ISOSCELES_TRIANGLE_6 = prove | |
(`!A B C D:real^N. | |
~collinear{D,C,A} /\ D = midpoint(A,B) /\ angle(A,C,D) = angle(B,C,D) | |
==> dist(A,C) = dist(B,C)`, | |
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] LAW_OF_SINES) THEN | |
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] LAW_OF_SINES) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN | |
EXPAND_TAC "D" THEN REWRITE_TAC[DIST_MIDPOINT] THEN | |
ASM_SIMP_TAC[REAL_EQ_MUL_RCANCEL; REAL_LT_IMP_NZ; REAL_HALF; DIST_POS_LT; | |
SIN_ANGLE_EQ] THEN | |
STRIP_TAC THENL | |
[MP_TAC(ISPECL [`D:real^N`; `C:real^N`; `A:real^N`; | |
`D:real^N`; `C:real^N`; `B:real^N`] | |
CONGRUENT_TRIANGLES_AAS) THEN | |
ANTS_TAC THENL [ALL_TAC; MESON_TAC[DIST_SYM]] THEN | |
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ANGLE_SYM] THEN | |
ASM_REWRITE_TAC[]; | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] | |
TRIANGLE_ANGLE_SUM) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `angle(A:real^N,B,C) = angle(C,B,D) /\ | |
angle(B,A,C) = angle(C,A,D)` | |
(CONJUNCTS_THEN SUBST1_TAC) | |
THENL | |
[CONJ_TAC THEN GEN_REWRITE_TAC LAND_CONV [ANGLE_SYM] THEN | |
MATCH_MP_TAC ANGLE_EQ_0_LEFT THEN | |
MP_TAC(ISPECL [`A:real^N`; `B:real^N`] BETWEEN_MIDPOINT) THEN | |
ASM_REWRITE_TAC[BETWEEN_ANGLE] THEN EXPAND_TAC "D" THEN | |
REWRITE_TAC[MIDPOINT_EQ_ENDPOINT] THEN ASM_REWRITE_TAC[] THEN | |
MESON_TAC[ANGLE_EQ_PI_OTHERS]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[REAL_ARITH `a + pi - a + x = pi <=> x = &0`] THEN | |
MAP_EVERY ASM_CASES_TAC | |
[`B:real^N = C`; `A:real^N = C`] THEN | |
ASM_REWRITE_TAC[ANGLE_REFL; REAL_ARITH `p / &2 = &0 <=> p = &0`] THEN | |
ASM_REWRITE_TAC[PI_NZ] THEN DISCH_TAC THEN | |
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] COLLINEAR_ANGLE) THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~collinear{D:real^N,C,A}` THEN | |
MATCH_MP_TAC(TAUT `(q ==> p) ==> ~p ==> q ==> r`) THEN | |
ONCE_REWRITE_TAC[SET_RULE `{bd,c,a} = {c,a,bd}`] THEN | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
REWRITE_TAC[COLLINEAR_LEMMA] THEN ASM_REWRITE_TAC[VECTOR_SUB_EQ] THEN | |
EXPAND_TAC "D" THEN REWRITE_TAC[midpoint] THEN | |
REWRITE_TAC[VECTOR_ARITH `inv(&2) % (A + B) - A = inv(&2) % (B - A)`] THEN | |
MESON_TAC[VECTOR_MUL_ASSOC]]);; | |