Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import ring_theory.localization | |
import valuation.basic | |
/-! | |
# Extending valuations to localizations | |
In this file we extend valuations on a ring R to localizations of R. | |
We use this to define the valuation field, the valuation ring, | |
and the residue field of a valued ring. | |
If v is a valuation on an integral domain R and `hv : supp v = 0`, then | |
`on_frac v hv` is the extension of v to fraction_ring R, the field of | |
fractions of R. | |
`valuation_field v`, `valuation_ring v`, `max_ideal v` and `residue_field v` | |
are the valuation field, valuation ring, maximal ideal and residue field | |
of v. See [Wedhorn; 1.26]. | |
-/ | |
local attribute [instance] classical.prop_decidable | |
local attribute [instance] classical.DLO | |
noncomputable theory | |
universes u u₀ | |
variables {R : Type u₀} [comm_ring R] | |
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] | |
variables {S : set R} [is_submonoid S] | |
namespace valuation | |
open linear_ordered_structure | |
variables (v : valuation R Γ₀) | |
lemma inverse_exists (s : S) : ∃ u : localization R S, u * s = 1 := | |
⟨(localization.to_units s).inv, units.inv_val _⟩ | |
/-- The underlying function of the extension of a valuation to a localization.-/ | |
def localization_v (h : ∀ s, s ∈ S → v s ≠ 0) : localization R S → Γ₀ := | |
λ (q : localization R S), quotient.lift_on' q (λ rs, v rs.1 * (v rs.2.1)⁻¹) | |
begin | |
rintros ⟨r1, s1, hs1⟩ ⟨r2, s2, hs2⟩ ⟨t, ht, hrst⟩, | |
change (s1 * r2 + -(s2 * r1)) * t = 0 at hrst, | |
show v r1 * (v s1)⁻¹ = v r2 * (v s2)⁻¹, | |
rw [add_mul, ←neg_mul_eq_neg_mul, add_neg_eq_zero] at hrst, | |
replace hrst : v (s1 * r2 * t) = v (s2 * r1 * t) := congr_arg v hrst, | |
apply group_with_zero.mul_inv_eq_of_eq_mul (h s1 hs1), | |
rw [mul_comm, ←mul_assoc], | |
apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2), | |
rw [←v.map_mul, ←v.map_mul, mul_comm], | |
apply group_with_zero.mul_right_cancel (h t ht), | |
rw [←v.map_mul, ←v.map_mul, hrst] | |
end | |
/-- Extension of a valuation to a localization -/ | |
protected def localization (h : ∀ s, s ∈ S → v s ≠ 0) : valuation (localization R S) Γ₀ := | |
{ to_fun := v.localization_v h, | |
map_zero' := show v 0 * (v 1)⁻¹ = 0, by rw [v.map_zero, zero_mul], | |
map_one' := show v 1 * (v 1)⁻¹ = 1, by {rw [v.map_one], simp}, | |
map_mul' := λ x y, quotient.induction_on₂' x y begin | |
rintro ⟨r1, s1, hs1⟩, | |
rintro ⟨r2, s2, hs2⟩, | |
-- TODO : I had to write the next line "blind" -- I had to be the compiler. | |
-- Am I missing a trick? | |
show v (r1 * r2) * (v(s1 * s2))⁻¹ = (v r1 * (v s1)⁻¹) * (v r2 * (v s2)⁻¹), | |
have hs12 : s1 * s2 ∈ S := is_submonoid.mul_mem hs1 hs2, | |
apply group_with_zero.mul_inv_eq_of_eq_mul (h (s1 * s2) hs12), | |
rw [mul_comm _ (v (s1 * s2)), ←mul_assoc, ←mul_assoc], | |
apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2), | |
rw [mul_comm _ (v r2), ←v.map_mul, ←mul_assoc, ←v.map_mul, ←mul_assoc, ←v.map_mul], | |
apply group_with_zero.eq_mul_inv_of_mul_eq (h s1 hs1), | |
rw [←v.map_mul], | |
apply congr_arg, ring, | |
end, | |
map_add' := λ x y, quotient.induction_on₂' x y begin | |
rintro ⟨r1, s1, hs1⟩, | |
rintro ⟨r2, s2, hs2⟩, | |
have := v.map_add (r1 * s2) (r2 * s1), | |
rw le_max_iff at this ⊢, | |
show v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r1 * (v s1)⁻¹ ∨ | |
v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r2 * (v s2)⁻¹, | |
cases this with h1 h2, | |
{ left, | |
apply le_mul_inv_of_mul_le (h s1 hs1), | |
rw [mul_comm, ←mul_assoc], | |
apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)), | |
replace h1 := linear_ordered_structure.mul_le_mul_right h1 (v s1), | |
rw [←v.map_mul, ←v.map_mul] at h1 ⊢, | |
rw (show s1 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s1, by ring), | |
rwa (show r1 * (s1 * s2) = r1 * s2 * s1, by ring), | |
}, | |
{ right, | |
apply le_mul_inv_of_mul_le (h s2 hs2), | |
rw [mul_comm, ←mul_assoc], | |
apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)), | |
replace h2 := linear_ordered_structure.mul_le_mul_right h2 (v s2), | |
rw [←v.map_mul, ←v.map_mul] at h2 ⊢, | |
rw (show s2 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s2, by ring), | |
rwa (show r2 * (s1 * s2) = r2 * s1 * s2, by ring), | |
} | |
end } | |
/-- Extension of a valuation to a localization -/ | |
lemma localization_apply (h : ∀ s, s ∈ S → v s ≠ 0) (r : R) : | |
(v.localization h : valuation (localization R S) Γ₀) r = v r := | |
show v r * (v 1)⁻¹ = v r, by simp | |
/-- the extension of a valuation pulls back to the valuation -/ | |
lemma localization_comap (h : ∀ s, s ∈ S → v s ≠ 0) : (v.localization h).comap (localization.of) = v := | |
valuation.ext $ λ r, localization_apply v h r | |
lemma eq_localization_of_comap_aux {v} (w : valuation (localization R S) Γ₀) | |
(h : w.comap (localization.of) = v) : ∀ s, s ∈ S → v s ≠ 0 := λ s hs h0, | |
begin | |
cases inverse_exists ⟨s, hs⟩ with u hu, | |
let s' : units (localization R S) := ⟨localization.of s, u, mul_comm u s ▸ hu, hu⟩, | |
refine group_with_zero.unit_ne_zero (units.map (w : (localization R S) →* Γ₀) s') _, | |
rwa ←h at h0, | |
end | |
/-- If a valuation on a localisation pulls back to v then it's the localization of v -/ | |
lemma eq_localization_of_comap (w : valuation (localization R S) Γ₀) | |
(h : w.comap (localization.of) = v) : v.localization (eq_localization_of_comap_aux w h) = w := | |
begin | |
ext q, | |
induction q, | |
{ rcases q with ⟨r, s, hs⟩, | |
show v r * (v s)⁻¹ = w (localization.mk r ⟨s, hs⟩), | |
rw [localization.mk_eq, ←h, w.map_mul], | |
show w r * _ = _, | |
congr, | |
show (w s)⁻¹ = _, | |
rw w.map_units_inv, | |
refl, }, | |
refl | |
end | |
section fraction_ring | |
open localization localization.fraction_ring | |
/-- A ring in which the zero ideal is prime is an integral domain. -/ | |
def integral_domain_of_prime_bot (h : (⊥ : ideal R).is_prime) : integral_domain R := | |
{ zero_ne_one := assume zero_eq_one, h.1 $ (ideal.eq_top_iff_one _).mpr $ | |
(submodule.mem_bot R).mpr zero_eq_one.symm, | |
eq_zero_or_eq_zero_of_mul_eq_zero := λ r s, by { repeat {rw ← submodule.mem_bot R}, apply h.2 }, | |
.. ‹comm_ring R› } | |
/-- A ring is an integral domain if it admits a valuation whose support is the zero ideal. -/ | |
def integral_domain_of_supp_zero (hv : v.supp = 0) : integral_domain R := | |
integral_domain_of_prime_bot $ | |
by { rw [← ideal.zero_eq_bot, ← hv], exact valuation.ideal.is_prime v } | |
/-- The extension of valuation on R with support 0 to a valuation on the field of fractions. -/ | |
def on_frac (hv : v.supp = 0) : valuation (fraction_ring R) Γ₀ := | |
v.localization $ λ r hr hnz, | |
begin | |
letI := v.integral_domain_of_supp_zero hv, | |
refine (@mem_non_zero_divisors_iff_ne_zero R _ _ r).mp hr _, | |
rwa [← submodule.mem_bot R, ← ideal.zero_eq_bot, ← hv], | |
end | |
@[simp] lemma on_frac_comap_eq (hv : supp v = 0) : | |
(v.on_frac hv).comap of = v := | |
v.localization_comap _ | |
lemma on_frac_comap_eq_apply (hv : supp v = 0) (r : R) : | |
((v.on_frac hv).comap of : valuation R Γ₀) r = v r := by rw on_frac_comap_eq | |
/-- Pulling back a valuation on `fraction_ring R` to R and then applying `on_frac` is the | |
identity function. -/ | |
@[simp] lemma comap_on_frac_eq {R : Type*} [integral_domain R] (v : valuation (fraction_ring R) Γ₀) : | |
(v.comap of).on_frac | |
(by {rw [comap_supp, ideal.zero_eq_bot, v.supp.eq_bot_of_prime], | |
apply ideal.comap_bot_of_inj, apply fraction_ring.of.injective }) | |
= v := | |
valuation.eq_localization_of_comap _ _ rfl | |
lemma frac_preorder_comap (hv : supp v = 0) : | |
preorder.lift (localization.of) (v.on_frac hv).to_preorder = v.to_preorder := | |
preorder.ext $ λ x y, begin show (v.on_frac hv) x ≤ (v.on_frac hv) y ↔ v x ≤ v y, | |
rw [←on_frac_comap_eq_apply v hv, ←on_frac_comap_eq_apply v hv], exact iff.rfl end | |
end fraction_ring -- end of section | |
section valuation_field | |
/-- The quotient ring R/supp(v) associated to a valuation. -/ | |
definition valuation_ID := (supp v).quotient | |
/-- the support of a valuation is a prime ideal, so R/supp(v) is an integral domain. -/ | |
instance integral_domain' : integral_domain (valuation_ID v) := | |
by delta valuation_ID; apply_instance | |
/-- The preorder on R/supp(v) induced by Γ₀ via `v.on_quot` -/ | |
instance : preorder (valuation_ID v) := (v.on_quot (le_refl _)).to_preorder | |
/-- The function R → R/supp(v). -/ | |
def valuation_ID_mk : R → valuation_ID v := ideal.quotient.mk (supp v) | |
/-- The function R → R/supp(v) is a ring homomorphism. -/ | |
instance : is_ring_hom (v.valuation_ID_mk) := by unfold valuation_ID_mk; apply_instance | |
/-- The kernel of R → R/supp(v) is supp(v). -/ | |
lemma valuation_ID_mk_ker (r : R) : v.valuation_ID_mk r = 0 ↔ r ∈ supp v := | |
ideal.quotient.eq_zero_iff_mem | |
/-- `valuation_field v` is the field of fractions of R/supp(v). -/ | |
definition valuation_field := localization.fraction_ring (valuation_ID v) | |
/-- The field of fractions of R/supp(v) is a field. -/ | |
instance : discrete_field (valuation_field v) := by delta valuation_field; apply_instance | |
/-- The canonical map R → fraction_ring (R/supp(v)). -/ | |
def valuation_field_mk (r : R) : valuation_field v := localization.of (v.valuation_ID_mk r) | |
/-- The map R → Frac(R/supp(v)) is a ring homomorphism. -/ | |
instance to_valuation_field.is_ring_hom : is_ring_hom (valuation_field_mk v) := | |
by delta valuation_field_mk; apply_instance | |
/-- The kernel of R → Frac(R/supp(v)) is supp(v). -/ | |
lemma valuation_field_mk_ker (r : R) : v.valuation_field_mk r = 0 ↔ r ∈ supp v := | |
⟨λ h, (v.valuation_ID_mk_ker r).1 $ localization.fraction_ring.eq_zero_of _ h, | |
λ h, show localization.of _ = 0, by rw (v.valuation_ID_mk_ker r).2 h; apply is_ring_hom.map_zero⟩ | |
lemma valuation_field_mk_ne_zero (r : R) (hr : v r ≠ 0) : valuation_field_mk v r ≠ 0 := | |
λ h, hr ((valuation_field_mk_ker v r).1 h) | |
/-- The induced preorder on Frac(R/supp(v)). -/ | |
instance valfield_preorder : preorder (valuation_field v) := | |
((v.on_quot (le_refl _)).on_frac $ supp_quot_supp v).to_preorder | |
/-- The induced map from R \ supp(v) to the units of Frac(R/supp(v)). -/ | |
def units_valfield_mk (r : R) (h : r ∉ supp v) : units (valuation_field v) := | |
⟨v.valuation_field_mk r, | |
(v.valuation_field_mk r)⁻¹, | |
mul_inv_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $ | |
localization.fraction_ring.eq_zero_of _ h2), | |
inv_mul_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $ | |
localization.fraction_ring.eq_zero_of _ h2)⟩ | |
/-- The preorder on the units of Frac(R/supp(v)) induced by the extension of v. -/ | |
instance units_valfield_preorder : | |
preorder (units (valuation_field v)) := preorder.lift (λ u, u.val) (by apply_instance) | |
/-- The valuation on Frac(R/supp(v)) induced by v. -/ | |
definition on_valuation_field : valuation (valuation_field v) Γ₀ := | |
on_frac (v.on_quot (set.subset.refl _)) | |
begin | |
rw [supp_quot, ideal.zero_eq_bot], | |
apply ideal.map_quotient_self, | |
end | |
/-- `valuation_ring v` is the elements of Frac(R/supp(v)) whose valuation is at most 1. -/ | |
definition valuation_ring := {x | v.on_valuation_field x ≤ 1} | |
/-- `valuation_ring v` is a subring of Frac(R/supp(v)). -/ | |
instance : is_subring (valuation_ring v) := | |
{ zero_mem := show v.on_valuation_field 0 ≤ 1, by simp, | |
add_mem := λ x y hx hy, | |
calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) : | |
v.on_valuation_field.map_add x y | |
... ≤ 1 : max_le hx hy, | |
neg_mem := by simp [valuation_ring], | |
one_mem := by simp [valuation_ring, le_refl], | |
mul_mem := λ x y (hx : _ ≤ _) (hy : _ ≤ _), show v.on_valuation_field _ ≤ 1, | |
by convert le_trans (linear_ordered_structure.mul_le_mul_left hy _) _; simp [hx] } | |
/-- `max_ideal v` is the ideal of `valuation_ring v` consisting of things with valuation | |
strictly less than 1. -/ | |
definition max_ideal : ideal (valuation_ring v) := | |
{ carrier := { r | v.on_valuation_field r < 1 }, | |
zero := show v.on_valuation_field 0 < 1, by apply lt_of_le_of_ne; simp, | |
add := λ x y (hx : _ < 1) (hy : _ < 1), | |
calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) : | |
v.on_valuation_field.map_add x y | |
... < 1 : max_lt hx hy, | |
smul := λ c x (hx : _ < 1), | |
show v.on_valuation_field _ < 1, | |
begin | |
refine lt_of_le_of_lt _ _, | |
swap, | |
convert (linear_ordered_structure.mul_le_mul_right _ _), | |
exact map_mul _ _ _, | |
swap, | |
convert c.property, | |
simpa using hx | |
end } | |
set_option class.instance_max_depth 40 | |
/-- `max_ideal v` is indeed a maximal ideal of `valuation_ring v`. -/ | |
instance max_ideal_is_maximal : (max_ideal v).is_maximal := | |
begin | |
rw ideal.is_maximal_iff, | |
split, | |
{ exact λ (H : _ < _), ne_of_lt H (map_one _) }, | |
{ rintros J ⟨x,hx⟩ hJ hxni hxinJ, | |
have vx : v.on_valuation_field x = 1 := | |
by { rw eq_iff_le_not_lt, split; assumption }, | |
have hxinv : v.on_valuation_field x⁻¹ ≤ 1 := by simp [vx], | |
convert J.smul_mem ⟨x⁻¹, hxinv⟩ hxinJ, | |
symmetry, apply subtype.val_injective, | |
apply inv_mul_cancel, | |
show x ≠ 0, | |
assume hxeq0, simpa [hxeq0] using vx } | |
end | |
set_option class.instance_max_depth 32 | |
/-- `residue_field v` is the quotient of `valuation_ring v` by `max_ideal v`. -/ | |
definition residue_field := (max_ideal v).quotient | |
/-- `residue_field v` is a field. -/ | |
instance residue_field.discrete_field : discrete_field (residue_field v) := ideal.quotient.field _ | |
end valuation_field | |
end valuation | |