Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import pseudo_normed_group.basic | |
local attribute [instance] type_pow | |
open_locale nnreal big_operators | |
namespace pseudo_normed_group | |
section splittable | |
class splittable (M : Type*) [pseudo_normed_group M] (N : β) (d : ββ₯0) : Prop := | |
(exists_sum : β (c : ββ₯0) (x : M) (hx : x β filtration M c), | |
β y : fin N β M, (x = β i, y i) β§ (β i, y i β filtration M (c/N + d))) | |
variables {M : Type*} [pseudo_normed_group M] (N : β) (d : ββ₯0) [splittable M N d] | |
lemma exists_sum (c : ββ₯0) (x : M) (hx : x β filtration M c) : | |
β y : fin N β M, (x = β i, y i) β§ (y β filtration (M^N) (c/N + d)) := | |
splittable.exists_sum c x hx | |
instance splittable_pi {ΞΉ : Type*} (M : ΞΉ β Type*) [Ξ i, pseudo_normed_group (M i)] | |
(N : β) (d : ββ₯0) [β i, splittable (M i) N d] : | |
splittable (Ξ i, M i) N d := | |
{ exists_sum := Ξ» c x hx, | |
begin | |
have := Ξ» i, exists_sum N d c (x i) (hx i), | |
choose y hy1 hy2 using this, | |
refine β¨function.swap y, _, function.swap hy2β©, | |
ext i, rw [hy1], symmetry, convert finset.sum_apply i _ _, | |
end } | |
end splittable | |
end pseudo_normed_group | |