Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.13 kB
import pseudo_normed_group.basic
local attribute [instance] type_pow
open_locale nnreal big_operators
namespace pseudo_normed_group
section splittable
class splittable (M : Type*) [pseudo_normed_group M] (N : β„•) (d : ℝβ‰₯0) : Prop :=
(exists_sum : βˆ€ (c : ℝβ‰₯0) (x : M) (hx : x ∈ filtration M c),
βˆƒ y : fin N β†’ M, (x = βˆ‘ i, y i) ∧ (βˆ€ i, y i ∈ filtration M (c/N + d)))
variables {M : Type*} [pseudo_normed_group M] (N : β„•) (d : ℝβ‰₯0) [splittable M N d]
lemma exists_sum (c : ℝβ‰₯0) (x : M) (hx : x ∈ filtration M c) :
βˆƒ y : fin N β†’ M, (x = βˆ‘ i, y i) ∧ (y ∈ filtration (M^N) (c/N + d)) :=
splittable.exists_sum c x hx
instance splittable_pi {ΞΉ : Type*} (M : ΞΉ β†’ Type*) [Ξ  i, pseudo_normed_group (M i)]
(N : β„•) (d : ℝβ‰₯0) [βˆ€ i, splittable (M i) N d] :
splittable (Ξ  i, M i) N d :=
{ exists_sum := Ξ» c x hx,
begin
have := Ξ» i, exists_sum N d c (x i) (hx i),
choose y hy1 hy2 using this,
refine ⟨function.swap y, _, function.swap hy2⟩,
ext i, rw [hy1], symmetry, convert finset.sum_apply i _ _,
end }
end splittable
end pseudo_normed_group