Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Examples /safetyliveness.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.46 kB
(* ========================================================================= *)
(* Formal definition of "safety" and "liveness" for properties of traces. *)
(* Proof that any property of traces can be decomposed into the conjunction *)
(* of a safety and a liveness property, following Fred Schneider's paper *)
(* "Decomposing Properties into Safety and Liveness using Predicate Logic". *)
(* *)
(* https://apps.dtic.mil/dtic/tr/fulltext/u2/a187556.pdf *)
(* ========================================================================= *)
let safety = new_definition
`safety (p:(num->S)->bool) <=>
!s. ~(p s) ==> ?n. !s'. (!m. m <= n ==> s(m) = s'(m)) ==> ~(p s')`;;
let liveness = new_definition
`liveness (p:(num->S)->bool) <=>
!s n. ?s'. (!m. m <= n ==> s(m) = s'(m)) /\ p s'`;;
(* ------------------------------------------------------------------------- *)
(* It doesn't matter whether we take strict or non-strict subsequences. *)
(* ------------------------------------------------------------------------- *)
let SAFETY = prove
(`!p:(num->S)->bool.
safety p <=>
!s. ~(p s) ==> ?n. !s'. (!m. m < n ==> s(m) = s'(m)) ==> ~(p s')`,
GEN_TAC THEN REWRITE_TAC[safety; GSYM LT_SUC_LE] THEN
MESON_TAC[ARITH_RULE `m < n ==> m < SUC n`]);;
let LIVENESS = prove
(`!p:(num->S)->bool.
liveness p <=>
!s n. ?s'. (!m. m < n ==> s(m) = s'(m)) /\ p s'`,
GEN_TAC THEN REWRITE_TAC[liveness; GSYM LT_SUC_LE] THEN
MESON_TAC[ARITH_RULE `m < n ==> m < SUC n`]);;
(* ------------------------------------------------------------------------- *)
(* Decomposition theorem (following top level of Schneider's proof). *)
(* ------------------------------------------------------------------------- *)
let SAFETY_LIVENESS_DECOMPOSITION = prove
(`!P:(num->S)->bool.
?S L. safety S /\ liveness L /\ (!x. S x /\ L x <=> P x)`,
REPEAT GEN_TAC THEN
ABBREV_TAC `Q = \s:num->S. !i. ?b. (!j. j <= i ==> b j = s j) /\ P b` THEN
MAP_EVERY EXISTS_TAC [`\s:num->S. P s \/ Q s`; `\s:num->S. P s \/ ~Q s`] THEN
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL
[EXPAND_TAC "Q" THEN REWRITE_TAC[safety; liveness]; MESON_TAC[]] THEN
REWRITE_TAC[DE_MORGAN_THM; IMP_CONJ; NOT_FORALL_THM] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[];
MESON_TAC[]]);;