(* ========================================================================= *) (* Formal definition of "safety" and "liveness" for properties of traces. *) (* Proof that any property of traces can be decomposed into the conjunction *) (* of a safety and a liveness property, following Fred Schneider's paper *) (* "Decomposing Properties into Safety and Liveness using Predicate Logic". *) (* *) (* https://apps.dtic.mil/dtic/tr/fulltext/u2/a187556.pdf *) (* ========================================================================= *) let safety = new_definition `safety (p:(num->S)->bool) <=> !s. ~(p s) ==> ?n. !s'. (!m. m <= n ==> s(m) = s'(m)) ==> ~(p s')`;; let liveness = new_definition `liveness (p:(num->S)->bool) <=> !s n. ?s'. (!m. m <= n ==> s(m) = s'(m)) /\ p s'`;; (* ------------------------------------------------------------------------- *) (* It doesn't matter whether we take strict or non-strict subsequences. *) (* ------------------------------------------------------------------------- *) let SAFETY = prove (`!p:(num->S)->bool. safety p <=> !s. ~(p s) ==> ?n. !s'. (!m. m < n ==> s(m) = s'(m)) ==> ~(p s')`, GEN_TAC THEN REWRITE_TAC[safety; GSYM LT_SUC_LE] THEN MESON_TAC[ARITH_RULE `m < n ==> m < SUC n`]);; let LIVENESS = prove (`!p:(num->S)->bool. liveness p <=> !s n. ?s'. (!m. m < n ==> s(m) = s'(m)) /\ p s'`, GEN_TAC THEN REWRITE_TAC[liveness; GSYM LT_SUC_LE] THEN MESON_TAC[ARITH_RULE `m < n ==> m < SUC n`]);; (* ------------------------------------------------------------------------- *) (* Decomposition theorem (following top level of Schneider's proof). *) (* ------------------------------------------------------------------------- *) let SAFETY_LIVENESS_DECOMPOSITION = prove (`!P:(num->S)->bool. ?S L. safety S /\ liveness L /\ (!x. S x /\ L x <=> P x)`, REPEAT GEN_TAC THEN ABBREV_TAC `Q = \s:num->S. !i. ?b. (!j. j <= i ==> b j = s j) /\ P b` THEN MAP_EVERY EXISTS_TAC [`\s:num->S. P s \/ Q s`; `\s:num->S. P s \/ ~Q s`] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [EXPAND_TAC "Q" THEN REWRITE_TAC[safety; liveness]; MESON_TAC[]] THEN REWRITE_TAC[DE_MORGAN_THM; IMP_CONJ; NOT_FORALL_THM] THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]; MESON_TAC[]]);;